Cargando…

Petal abscission in fragrant roses is associated with large scale differential regulation of the abscission zone transcriptome

Flowers of fragrant roses such as Rosa bourboniana are ethylene-sensitive and undergo rapid petal abscission while hybrid roses show reduced ethylene sensitivity and delayed abscission. To understand the molecular mechanism underlying these differences, a comparative transcriptome of petal abscissio...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Priya, Bharti, Neeraj, Singh, Amar Pal, Tripathi, Siddharth Kaushal, Pandey, Saurabh Prakash, Chauhan, Abhishek Singh, Kulkarni, Abhijeet, Sane, Aniruddha P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566604/
https://www.ncbi.nlm.nih.gov/pubmed/33057097
http://dx.doi.org/10.1038/s41598-020-74144-3
Descripción
Sumario:Flowers of fragrant roses such as Rosa bourboniana are ethylene-sensitive and undergo rapid petal abscission while hybrid roses show reduced ethylene sensitivity and delayed abscission. To understand the molecular mechanism underlying these differences, a comparative transcriptome of petal abscission zones (AZ) of 0 h and 8 h ethylene-treated flowers from R. bourboniana was performed. Differential regulation of 3700 genes (1518 up, 2182 down) representing 8.5% of the AZ transcriptome was observed between 0 and 8 h ethylene-treated R. bourboniana petal AZ. Abscission was associated with large scale up-regulation of the ethylene pathway but prominent suppression of the JA, auxin and light-regulated pathways. Regulatory genes encoding kinases/phosphatases/F-box proteins and transcription factors formed the major group undergoing differential regulation besides genes for transporters, wall modification, defense and phenylpropanoid pathways. Further comparisons with ethylene-treated petals of R. bourboniana and 8 h ethylene-treated AZ (R. hybrida) identified a core set of 255 genes uniquely regulated by ethylene in R. bourboniana AZ. Almost 23% of these encoded regulatory proteins largely conserved with Arabidopsis AZ components. Most of these were up-regulated while an entire set of photosystem genes was prominently down-regulated. The studies provide important information on regulation of petal abscission in roses.