Cargando…
Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms
Nondestructive techniques for estimating nitrogen (N) status are essential tools for optimizing N fertilization input and reducing the environmental impact of agricultural N management, especially in green tea cultivation, which is notably problematic. Previously, hyperspectral indices for chlorophy...
Autores principales: | Yamashita, Hiroto, Sonobe, Rei, Hirono, Yuhei, Morita, Akio, Ikka, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566634/ https://www.ncbi.nlm.nih.gov/pubmed/33060629 http://dx.doi.org/10.1038/s41598-020-73745-2 |
Ejemplares similares
-
Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms
por: Sonobe, Rei, et al.
Publicado: (2020) -
Potential of spectroscopic analyses for non-destructive estimation of tea quality-related metabolites in fresh new leaves
por: Yamashita, Hiroto, et al.
Publicado: (2021) -
Phenotypic Markers Reflecting the Status of Overstressed Tea Plants Subjected to Repeated Shade Cultivation
por: Yamashita, Hiroto, et al.
Publicado: (2020) -
Tissue-Dependent Variation Profiles of Tea Quality-Related Metabolites in New Shoots of Tea Accessions
por: Yamashita, Hiroto, et al.
Publicado: (2021) -
Tissue ionome response to rhizosphere pH and aluminum in tea plants (Camellia sinensis L.), a species adapted to acidic soils
por: Yamashita, Hiroto, et al.
Publicado: (2020)