Cargando…

A device for stereotaxic viral delivery into the brains of neonatal mice

The increasing interest in manipulating neural circuits in developing brains has created a demand for reliable and accurate methods for delivering viruses to newborn mice. Here we describe a novel 3D-printed mouse neonatal stereotaxic adaptor for intracerebral viral injection that provides enhanced...

Descripción completa

Detalles Bibliográficos
Autores principales: Olivetti, Pedro R, Lacefield, Clay O, Kellendonk, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Future Science Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566774/
https://www.ncbi.nlm.nih.gov/pubmed/32777950
http://dx.doi.org/10.2144/btn-2020-0050
Descripción
Sumario:The increasing interest in manipulating neural circuits in developing brains has created a demand for reliable and accurate methods for delivering viruses to newborn mice. Here we describe a novel 3D-printed mouse neonatal stereotaxic adaptor for intracerebral viral injection that provides enhanced precision and reliability. Using this device, we injected A2a-Cre mice with a Cre-dependent hM4D-mCherry viral construct at postnatal day 1 (P1) and demonstrated selective expression in the striatal indirect pathway neurons on days P7, P11 and P25. Similarly, dopaminergic midbrain neurons were selectively targeted with a Cre-dependent green fluorescent protein virus in Dat-IRES-Cre neonates and expression examined at P25. Our open-source neonatal stereotaxic mouse adaptor facilitates neonatal neuronal targeting, which should improve the ability to label and modify neural circuits in developing mouse brains.