Cargando…
Detecting Asymmetric Patterns and Localizing Cancers on Mammograms
One in eight women develops invasive breast cancer in her lifetime. The frontline protection against this disease is mammography. While computer-assisted diagnosis algorithms have made great progress in generating reliable global predictions, few focus on simultaneously producing regions of interest...
Autores principales: | Guan, Yuanfang, Wang, Xueqing, Li, Hongyang, Zhang, Zhenning, Chen, Xianghao, Siddiqui, Omer, Nehring, Sara, Huang, Xiuzhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566852/ https://www.ncbi.nlm.nih.gov/pubmed/33073255 http://dx.doi.org/10.1016/j.patter.2020.100106 |
Ejemplares similares
-
Joint learning improves protein abundance prediction in cancers
por: Li, Hongyang, et al.
Publicado: (2019) -
Assessment of the timeliness and robustness for predicting adult sepsis
por: Guan, Yuanfang, et al.
Publicado: (2021) -
Automatic detection of abnormalities in mammograms
por: Suhail, Zobia, et al.
Publicado: (2015) -
Analysis of Oriented Texture - with application to the Detection of Architectural Distortion in Mammograms: with Application to the Detection of Architectural Distortion in Mammograms
por: Ayres, Fabio, et al.
Publicado: (2011) -
Automatic detection of anomalies in screening mammograms
por: Kendall, Edward J, et al.
Publicado: (2013)