Cargando…
Fuzzy Electromagnetism Optimization (FEMO) and its application in biomedical image segmentation
In this work, a new unsupervised classification approach is proposed for the biomedical image segmentation. The proposed method will be known as Fuzzy Electromagnetism Optimization (FEMO). As the name suggests, the proposed approach is based on the electromagnetism-like optimization (EMO) method. Th...
Autores principales: | Chakraborty, Shouvik, Mali, Kalyani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566893/ https://www.ncbi.nlm.nih.gov/pubmed/33100938 http://dx.doi.org/10.1016/j.asoc.2020.106800 |
Ejemplares similares
-
SUFEMO: A superpixel based fuzzy image segmentation method for COVID-19 radiological image elucidation
por: Chakraborty, Shouvik, et al.
Publicado: (2022) -
SuFMoFPA: A superpixel and meta-heuristic based fuzzy image segmentation approach to explicate COVID-19 radiological images
por: Chakraborty, Shouvik, et al.
Publicado: (2021) -
SUFMACS: A machine learning-based robust image segmentation framework for COVID-19 radiological image interpretation
por: Chakraborty, Shouvik, et al.
Publicado: (2021) -
A morphology-based radiological image segmentation approach for efficient screening of COVID-19
por: Chakraborty, Shouvik, et al.
Publicado: (2021) -
A radiological image analysis framework for early screening of the COVID-19 infection: A computer vision-based approach
por: Chakraborty, Shouvik, et al.
Publicado: (2022)