Cargando…
Identification of Orphan Genes in Unbalanced Datasets Based on Ensemble Learning
Orphan genes are associated with regulatory patterns, but experimental methods for identifying orphan genes are both time-consuming and expensive. Designing an accurate and robust classification model to detect orphan and non-orphan genes in unbalanced distribution datasets poses a particularly huge...
Autores principales: | Gao, Qijuan, Jin, Xiu, Xia, Enhua, Wu, Xiangwei, Gu, Lichuan, Yan, Hanwei, Xia, Yingchun, Li, Shaowen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567012/ https://www.ncbi.nlm.nih.gov/pubmed/33133122 http://dx.doi.org/10.3389/fgene.2020.00820 |
Ejemplares similares
-
A deep learning approach for orphan gene identification in moso bamboo (Phyllostachys edulis) based on the CNN + Transformer model
por: Zhang, Xiaodan, et al.
Publicado: (2022) -
EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides
por: Ge, Ruiquan, et al.
Publicado: (2020) -
Evolutionary Optimization of Ensemble Learning to Determine Sentiment Polarity in an Unbalanced Multiclass Corpus
por: García-Mendoza, Consuelo V., et al.
Publicado: (2020) -
A Stacking Ensemble Learning Framework for Genomic Prediction
por: Liang, Mang, et al.
Publicado: (2021) -
Using Image Recognition to Process Unbalanced Data in Genetic Diseases From Biobanks
por: Hsieh, Ai-Ru, et al.
Publicado: (2022)