Cargando…
An Electronic Medical Record–Based Discharge Disposition Tool Gets Bundle Busted: Decaying Relevance of Clinical Data Accuracy in Machine Learning
BACKGROUND: Determining discharge disposition after total joint arthroplasty (TJA) has been a challenge. Advances in machine learning (ML) have produced computer models that learn by example to generate predictions on future events. We hypothesized a trained ML algorithm’s diagnostic accuracy will b...
Autores principales: | Greenstein, Alexander S., Teitel, Jack, Mitten, David J., Ricciardi, Benjamin F., Myers, Thomas G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567055/ https://www.ncbi.nlm.nih.gov/pubmed/33088883 http://dx.doi.org/10.1016/j.artd.2020.08.007 |
Ejemplares similares
-
The Predictive Accuracy of the CareMOSAIC Risk Assessment for Discharge Disposition in Medicare Bundle Patients After Total Joint Arthroplasty
por: Anderson, Corey, et al.
Publicado: (2022) -
What if I Get Busted? Deception, Choice, and Decision-Making in Social Interaction
por: Sip, Kamila E., et al.
Publicado: (2012) -
Growth or Bust
por: Mark, Faust
Publicado: (2011) -
"Colliders or bust"
por: Zimmermann, Frank
Publicado: (2022) -
Bust of Galen
Publicado: (1941)