Cargando…

A reconfigurable sandwich structure switchable DNA-based metamaterial

In this paper, a tunable DNA-based metamaterial is designed and simulated in 170–340 THz range. This metamaterial can be transformed from an ON mode with a low resistance state of the DNA strip to its OFF mode with a high resistance state. Three Structures with containing different combinations meta...

Descripción completa

Detalles Bibliográficos
Autor principal: Zhong, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567067/
https://www.ncbi.nlm.nih.gov/pubmed/33060652
http://dx.doi.org/10.1038/s41598-020-74214-6
Descripción
Sumario:In this paper, a tunable DNA-based metamaterial is designed and simulated in 170–340 THz range. This metamaterial can be transformed from an ON mode with a low resistance state of the DNA strip to its OFF mode with a high resistance state. Three Structures with containing different combinations metal layers are designed and simulated. Structure 1 with Ag/DNA/Ag and Au/DNA/Au strategies achieves field enhancement factors (FEF) 2.18 and 2.07, respectively. Structure 2 (Au/DNA/Dirac, Dirac/DNA/Au, Ag/DNA/Dirac, or Dirac/DNA/Ag) achieves the FEF values 14.11, 10.70, 13.75, or 9.62, respectively, while the FEF value of Structure 3 with Dirac/DNA/Dirac reaches 59.8. The FEF value of Structure 3 can be modulated from 59.8 to 91.96 as Fermi energy increasing from 0 to 60 meV. Moreover, the FEF value is also enhanced through increasing the magnetic field strength. The Structure 3 exhibits convertibility and sustainable modulation lines between two opposing patterns. The proposed structure reveals a switchable feature based on the resistance characteristics of DNA strips, which can be revealed as an ON/OFF switch sensor. Moreover, the switching performance of Structures 3 and 2 is significantly higher than Structure 1. Therefore, Structures 3 and 2 can be set to be an optical memristor or optical gate.