Cargando…

Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries

The sluggish electrochemical kinetics of sulfur species has impeded the wide adoption of lithium-sulfur battery, which is one of the most promising candidates for next-generation energy storage system. Here, we present the electronic and geometric structures of all possible sulfur species and constr...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fang, Sun, Geng, Wu, Hao Bin, Chen, Gen, Xu, Duo, Mo, Runwei, Shen, Li, Li, Xianyang, Ma, Shengxiang, Tao, Ran, Li, Xinru, Tan, Xinyi, Xu, Bin, Wang, Ge, Dunn, Bruce S., Sautet, Philippe, Lu, Yunfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567085/
https://www.ncbi.nlm.nih.gov/pubmed/33060606
http://dx.doi.org/10.1038/s41467-020-19070-8
_version_ 1783596252259155968
author Liu, Fang
Sun, Geng
Wu, Hao Bin
Chen, Gen
Xu, Duo
Mo, Runwei
Shen, Li
Li, Xianyang
Ma, Shengxiang
Tao, Ran
Li, Xinru
Tan, Xinyi
Xu, Bin
Wang, Ge
Dunn, Bruce S.
Sautet, Philippe
Lu, Yunfeng
author_facet Liu, Fang
Sun, Geng
Wu, Hao Bin
Chen, Gen
Xu, Duo
Mo, Runwei
Shen, Li
Li, Xianyang
Ma, Shengxiang
Tao, Ran
Li, Xinru
Tan, Xinyi
Xu, Bin
Wang, Ge
Dunn, Bruce S.
Sautet, Philippe
Lu, Yunfeng
author_sort Liu, Fang
collection PubMed
description The sluggish electrochemical kinetics of sulfur species has impeded the wide adoption of lithium-sulfur battery, which is one of the most promising candidates for next-generation energy storage system. Here, we present the electronic and geometric structures of all possible sulfur species and construct an electronic energy diagram to unveil their reaction pathways in batteries, as well as the molecular origin of their sluggish kinetics. By decoupling the contradictory requirements of accelerating charging and discharging processes, we select two pseudocapacitive oxides as electron-ion source and drain to enable the efficient transport of electron/Li(+) to and from sulfur intermediates respectively. After incorporating dual oxides, the electrochemical kinetics of sulfur cathode is significantly accelerated. This strategy, which couples a fast-electrochemical reaction with a spontaneous chemical reaction to bypass a slow-electrochemical reaction pathway, offers a solution to accelerate an electrochemical reaction, providing new perspectives for the development of high-energy battery systems.
format Online
Article
Text
id pubmed-7567085
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75670852020-10-19 Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries Liu, Fang Sun, Geng Wu, Hao Bin Chen, Gen Xu, Duo Mo, Runwei Shen, Li Li, Xianyang Ma, Shengxiang Tao, Ran Li, Xinru Tan, Xinyi Xu, Bin Wang, Ge Dunn, Bruce S. Sautet, Philippe Lu, Yunfeng Nat Commun Article The sluggish electrochemical kinetics of sulfur species has impeded the wide adoption of lithium-sulfur battery, which is one of the most promising candidates for next-generation energy storage system. Here, we present the electronic and geometric structures of all possible sulfur species and construct an electronic energy diagram to unveil their reaction pathways in batteries, as well as the molecular origin of their sluggish kinetics. By decoupling the contradictory requirements of accelerating charging and discharging processes, we select two pseudocapacitive oxides as electron-ion source and drain to enable the efficient transport of electron/Li(+) to and from sulfur intermediates respectively. After incorporating dual oxides, the electrochemical kinetics of sulfur cathode is significantly accelerated. This strategy, which couples a fast-electrochemical reaction with a spontaneous chemical reaction to bypass a slow-electrochemical reaction pathway, offers a solution to accelerate an electrochemical reaction, providing new perspectives for the development of high-energy battery systems. Nature Publishing Group UK 2020-10-15 /pmc/articles/PMC7567085/ /pubmed/33060606 http://dx.doi.org/10.1038/s41467-020-19070-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Liu, Fang
Sun, Geng
Wu, Hao Bin
Chen, Gen
Xu, Duo
Mo, Runwei
Shen, Li
Li, Xianyang
Ma, Shengxiang
Tao, Ran
Li, Xinru
Tan, Xinyi
Xu, Bin
Wang, Ge
Dunn, Bruce S.
Sautet, Philippe
Lu, Yunfeng
Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries
title Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries
title_full Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries
title_fullStr Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries
title_full_unstemmed Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries
title_short Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries
title_sort dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567085/
https://www.ncbi.nlm.nih.gov/pubmed/33060606
http://dx.doi.org/10.1038/s41467-020-19070-8
work_keys_str_mv AT liufang dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT sungeng dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT wuhaobin dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT chengen dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT xuduo dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT morunwei dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT shenli dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT lixianyang dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT mashengxiang dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT taoran dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT lixinru dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT tanxinyi dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT xubin dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT wangge dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT dunnbruces dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT sautetphilippe dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries
AT luyunfeng dualredoxmediatorsacceleratetheelectrochemicalkineticsoflithiumsulfurbatteries