Cargando…
Topaz-Denoise: general deep denoising models for cryoEM and cryoET
Cryo-electron microscopy (cryoEM) is becoming the preferred method for resolving protein structures. Low signal-to-noise ratio (SNR) in cryoEM images reduces the confidence and throughput of structure determination during several steps of data processing, resulting in impediments such as missing par...
Autores principales: | Bepler, Tristan, Kelley, Kotaro, Noble, Alex J., Berger, Bonnie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567117/ https://www.ncbi.nlm.nih.gov/pubmed/33060581 http://dx.doi.org/10.1038/s41467-020-18952-1 |
Ejemplares similares
-
Using cryoEM and cryoET to visualize membrane penetration of a non-enveloped virus
por: Xia, Xian, et al.
Publicado: (2022) -
Fully automated multi-grid cryoEM screening using Smart Leginon
por: Cheng, Anchi, et al.
Publicado: (2023) -
CryoDRGN: Reconstruction of heterogeneous cryo-EM structures using neural networks
por: Zhong, Ellen D., et al.
Publicado: (2021) -
Bridging length scales from molecules to the whole organism by cryoCLEM and cryoET
por: Lovatt, Megan, et al.
Publicado: (2022) -
AlphaFold2 and CryoEM: Revisiting CryoEM modeling in near-atomic resolution density maps
por: Hryc, Corey F., et al.
Publicado: (2022)