Cargando…
Squeezed-light-driven force detection with an optomechanical cavity in a Mach–Zehnder interferometer
We analyze the performance of a force detector based on balanced measurements with a Mach–Zehnder interferometer incorporating a standard optomechanical cavity. The system is driven by a coherent superposition of coherent light and squeezed vacuum field, providing quantum correlation along with opti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567122/ https://www.ncbi.nlm.nih.gov/pubmed/33060770 http://dx.doi.org/10.1038/s41598-020-74629-1 |
Sumario: | We analyze the performance of a force detector based on balanced measurements with a Mach–Zehnder interferometer incorporating a standard optomechanical cavity. The system is driven by a coherent superposition of coherent light and squeezed vacuum field, providing quantum correlation along with optical coherence in order to enhance the measurement sensitivity beyond the standard quantum limit. We analytically find the optimal measurement strength, squeezing direction, and squeezing strength at which the symmetrized power spectral density for the measurement noise is minimized below the standard quantum limit. This force detection scheme based on a balanced Mach–Zehnder interferometer provides better sensitivity compared to that based on balanced homodyne detection with a local oscillator in the low frequency regime. |
---|