Cargando…
Identifying emerging mental illness utilizing search engine activity: A feasibility study
Mental illness often emerges during the formative years of adolescence and young adult development and interferes with the establishment of healthy educational, vocational, and social foundations. Despite the severity of symptoms and decline in functioning, the time between illness onset and receivi...
Autores principales: | Birnbaum, Michael L., Wen, Hongyi, Van Meter, Anna, Ernala, Sindhu K., Rizvi, Asra F., Arenare, Elizabeth, Estrin, Deborah, De Choudhury, Munmun, Kane, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567375/ https://www.ncbi.nlm.nih.gov/pubmed/33064759 http://dx.doi.org/10.1371/journal.pone.0240820 |
Ejemplares similares
-
Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study
por: Birnbaum, Michael Leo, et al.
Publicado: (2020) -
O9.2. IDENTIFYING PSYCHOTIC SYMPTOMS AND PREDICTING RELAPSE THROUGH SOCIAL MEDIA
por: Birnbaum, Michael, et al.
Publicado: (2018) -
A Collaborative Approach to Identifying Social Media Markers of Schizophrenia by Employing Machine Learning and Clinical Appraisals
por: Birnbaum, Michael L, et al.
Publicado: (2017) -
Clinician Perspectives on Using Computational Mental Health Insights From Patients’ Social Media Activities: Design and Qualitative Evaluation of a Prototype
por: Yoo, Dong Whi, et al.
Publicado: (2021) -
Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook
por: Birnbaum, M. L., et al.
Publicado: (2019)