Cargando…
Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study
The rate of disability accumulation varies across multiple sclerosis (MS) patients. Machine learning techniques may offer more powerful means to predict disease course in MS patients. In our study, 724 patients from the Comprehensive Longitudinal Investigation in MS at Brigham and Women’s Hospital (...
Autores principales: | Zhao, Yijun, Wang, Tong, Bove, Riley, Cree, Bruce, Henry, Roland, Lokhande, Hrishikesh, Polgar-Turcsanyi, Mariann, Anderson, Mark, Bakshi, Rohit, Weiner, Howard L., Chitnis, Tanuja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567781/ https://www.ncbi.nlm.nih.gov/pubmed/33083570 http://dx.doi.org/10.1038/s41746-020-00338-8 |
Ejemplares similares
-
Author Correction: Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study
por: Zhao, Yijun, et al.
Publicado: (2020) -
Relapse recovery in multiple sclerosis: Effect of treatment and contribution to long-term disability
por: Sotiropoulos, Marinos G, et al.
Publicado: (2021) -
miRNA 548a-3p as biomarker of NEDA-3 at 2 years in multiple sclerosis patients treated with fingolimod
por: Gonzalez-Martinez, Alicia, et al.
Publicado: (2023) -
Early miR-320b and miR-25-3p miRNA levels correlate with multiple sclerosis severity at 10 years: a cohort study
por: Gonzalez-Martinez, Alicia, et al.
Publicado: (2023) -
Handling changes in MRI acquisition parameters in modeling whole brain lesion volume and atrophy data in multiple sclerosis subjects: Comparison of linear mixed-effect models
por: Chua, Alicia S., et al.
Publicado: (2015)