Cargando…
Deep learning algorithms for detecting and visualising intussusception on plain abdominal radiography in children: a retrospective multicenter study
This study aimed to verify a deep convolutional neural network (CNN) algorithm to detect intussusception in children using a human-annotated data set of plain abdominal X-rays from affected children. From January 2005 to August 2019, 1449 images were collected from plain abdominal X-rays of patients...
Autores principales: | Kwon, Gitaek, Ryu, Jongbin, Oh, Jaehoon, Lim, Jongwoo, Kang, Bo-kyeong, Ahn, Chiwon, Bae, Junwon, Lee, Dong Keon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567788/ https://www.ncbi.nlm.nih.gov/pubmed/33067505 http://dx.doi.org/10.1038/s41598-020-74653-1 |
Ejemplares similares
-
The role of plain radiography in assessing intussusception
with vascular compromise in children
por: Guo, Wan-Liang, et al.
Publicado: (2011) -
Plain abdominal radiography in acute abdominal pain; past, present, and future
por: Gans, Sarah L, et al.
Publicado: (2012) -
Diagnosis of Spinal Epidural Abscess by Abdominal Plain-Film Radiography
por: Felton, Brent, et al.
Publicado: (2014) -
Diagnostic Value of Plain Abdominal Radiography in Stroke Patients With Bowel Dysfunction
por: Moon, Hyo Jeong, et al.
Publicado: (2015) -
Overuse of plain abdominal radiography in emergency departments: a retrospective cohort study
por: Bertin, Christophe L., et al.
Publicado: (2019)