Cargando…
Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues
Ubiquitylation is an elaborate post-translational modification involved in all biological processes. Its pleotropic effect is driven by the ability to form complex polyubiquitin chain architectures that can influence biological functions. In this study, we optimised sample preparation and chromatogr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567960/ https://www.ncbi.nlm.nih.gov/pubmed/32898700 http://dx.doi.org/10.1016/j.jprot.2020.103963 |
_version_ | 1783596433314676736 |
---|---|
author | Heunis, Tiaan Lamoliatte, Frederic Marín-Rubio, José Luis Dannoura, Abeer Trost, Matthias |
author_facet | Heunis, Tiaan Lamoliatte, Frederic Marín-Rubio, José Luis Dannoura, Abeer Trost, Matthias |
author_sort | Heunis, Tiaan |
collection | PubMed |
description | Ubiquitylation is an elaborate post-translational modification involved in all biological processes. Its pleotropic effect is driven by the ability to form complex polyubiquitin chain architectures that can influence biological functions. In this study, we optimised sample preparation and chromatographic separation of Ubiquitin peptides for Absolute Quantification by Parallel Reaction Monitoring (Ub-AQUA-PRM). Using this refined Ub-AQUA-PRM assay, we were able to quantify all ubiquitin chain types in 10-min LC-MS/MS runs. We used this method to determine the ubiquitin chain-linkage composition in murine bone marrow-derived macrophages and different mouse tissues. We could show tissue-specific differences in ubiquitin levels in murine tissues, with polyubiquitin chain types contributing a small proportion to the total pool of ubiquitin. Interestingly, we observed enrichment of atypical (K33) ubiquitin chains in heart and muscle. Our approach enabled high-throughput screening of ubiquitin chain-linkage composition in different murine tissues and highlighted a possible role for atypical ubiquitylation in contractile tissues. SIGNIFICANCE: Large knowledge gaps exist in our understanding of ubiquitin chain-linkage composition in mammalian tissues. Defining this in vivo ubiquitin chain-linkage landscape could reveal the functional importance of different ubiquitin chain types in tissues. In this study, we refined the previously described Ub-AQUA-PRM assay to enable quantification of all ubiquitin chain types in a high-throughput manner. Using this assay, we provided new data on the ubiquitin chain-linkage composition in primary murine macrophages and tissues, and revealed an enrichment of atypical ubiquitin chains in contractile tissues. Our approach should thus enable rapid, high-throughput screening of ubiquitin chain-linkage composition in different sample types, as demonstrated in murine primary cells and tissues. |
format | Online Article Text |
id | pubmed-7567960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75679602020-10-30 Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues Heunis, Tiaan Lamoliatte, Frederic Marín-Rubio, José Luis Dannoura, Abeer Trost, Matthias J Proteomics Article Ubiquitylation is an elaborate post-translational modification involved in all biological processes. Its pleotropic effect is driven by the ability to form complex polyubiquitin chain architectures that can influence biological functions. In this study, we optimised sample preparation and chromatographic separation of Ubiquitin peptides for Absolute Quantification by Parallel Reaction Monitoring (Ub-AQUA-PRM). Using this refined Ub-AQUA-PRM assay, we were able to quantify all ubiquitin chain types in 10-min LC-MS/MS runs. We used this method to determine the ubiquitin chain-linkage composition in murine bone marrow-derived macrophages and different mouse tissues. We could show tissue-specific differences in ubiquitin levels in murine tissues, with polyubiquitin chain types contributing a small proportion to the total pool of ubiquitin. Interestingly, we observed enrichment of atypical (K33) ubiquitin chains in heart and muscle. Our approach enabled high-throughput screening of ubiquitin chain-linkage composition in different murine tissues and highlighted a possible role for atypical ubiquitylation in contractile tissues. SIGNIFICANCE: Large knowledge gaps exist in our understanding of ubiquitin chain-linkage composition in mammalian tissues. Defining this in vivo ubiquitin chain-linkage landscape could reveal the functional importance of different ubiquitin chain types in tissues. In this study, we refined the previously described Ub-AQUA-PRM assay to enable quantification of all ubiquitin chain types in a high-throughput manner. Using this assay, we provided new data on the ubiquitin chain-linkage composition in primary murine macrophages and tissues, and revealed an enrichment of atypical ubiquitin chains in contractile tissues. Our approach should thus enable rapid, high-throughput screening of ubiquitin chain-linkage composition in different sample types, as demonstrated in murine primary cells and tissues. Elsevier 2020-10-30 /pmc/articles/PMC7567960/ /pubmed/32898700 http://dx.doi.org/10.1016/j.jprot.2020.103963 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Heunis, Tiaan Lamoliatte, Frederic Marín-Rubio, José Luis Dannoura, Abeer Trost, Matthias Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues |
title | Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues |
title_full | Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues |
title_fullStr | Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues |
title_full_unstemmed | Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues |
title_short | Technical report: Targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues |
title_sort | technical report: targeted proteomic analysis reveals enrichment of atypical ubiquitin chains in contractile murine tissues |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567960/ https://www.ncbi.nlm.nih.gov/pubmed/32898700 http://dx.doi.org/10.1016/j.jprot.2020.103963 |
work_keys_str_mv | AT heunistiaan technicalreporttargetedproteomicanalysisrevealsenrichmentofatypicalubiquitinchainsincontractilemurinetissues AT lamoliattefrederic technicalreporttargetedproteomicanalysisrevealsenrichmentofatypicalubiquitinchainsincontractilemurinetissues AT marinrubiojoseluis technicalreporttargetedproteomicanalysisrevealsenrichmentofatypicalubiquitinchainsincontractilemurinetissues AT dannouraabeer technicalreporttargetedproteomicanalysisrevealsenrichmentofatypicalubiquitinchainsincontractilemurinetissues AT trostmatthias technicalreporttargetedproteomicanalysisrevealsenrichmentofatypicalubiquitinchainsincontractilemurinetissues |