Cargando…
Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks
The novel coronavirus 2019 (COVID-19) is a respiratory syndrome that resembles pneumonia. The current diagnostic procedure of COVID-19 follows reverse-transcriptase polymerase chain reaction (RT-PCR) based approach which however is less sensitive to identify the virus at the initial stage. Hence, a...
Autores principales: | Punn, Narinder Singh, Agarwal, Sonali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568031/ https://www.ncbi.nlm.nih.gov/pubmed/34764554 http://dx.doi.org/10.1007/s10489-020-01900-3 |
Ejemplares similares
-
Application of deep learning to identify COVID-19 infection in posteroanterior chest X-rays
por: Maharjan, Jenish, et al.
Publicado: (2021) -
CHS-Net: A Deep Learning Approach for Hierarchical Segmentation of COVID-19 via CT Images
por: Punn, Narinder Singh, et al.
Publicado: (2022) -
Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?
por: Pham, Tuan D.
Publicado: (2020) -
Unsupervised anomaly detection for posteroanterior chest X-rays using multiresolution patch-based self-supervised learning
por: Kim, Minki, et al.
Publicado: (2023) -
Fine-Tuning Convolutional Neural Networks for COVID-19 Detection from Chest X-ray Images
por: Zhao, Wentao, et al.
Publicado: (2021)