Cargando…

Generation of thermofield double states and critical ground states with a quantum computer

Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), w...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, D., Johri, S., Linke, N. M., Landsman, K. A., Huerta Alderete, C., Nguyen, N. H., Matsuura, A. Y., Hsieh, T. H., Monroe, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568272/
https://www.ncbi.nlm.nih.gov/pubmed/32989132
http://dx.doi.org/10.1073/pnas.2006337117
_version_ 1783596494638546944
author Zhu, D.
Johri, S.
Linke, N. M.
Landsman, K. A.
Huerta Alderete, C.
Nguyen, N. H.
Matsuura, A. Y.
Hsieh, T. H.
Monroe, C.
author_facet Zhu, D.
Johri, S.
Linke, N. M.
Landsman, K. A.
Huerta Alderete, C.
Nguyen, N. H.
Matsuura, A. Y.
Hsieh, T. H.
Monroe, C.
author_sort Zhu, D.
collection PubMed
description Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results.
format Online
Article
Text
id pubmed-7568272
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-75682722020-10-27 Generation of thermofield double states and critical ground states with a quantum computer Zhu, D. Johri, S. Linke, N. M. Landsman, K. A. Huerta Alderete, C. Nguyen, N. H. Matsuura, A. Y. Hsieh, T. H. Monroe, C. Proc Natl Acad Sci U S A Physical Sciences Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results. National Academy of Sciences 2020-10-13 2020-09-28 /pmc/articles/PMC7568272/ /pubmed/32989132 http://dx.doi.org/10.1073/pnas.2006337117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Zhu, D.
Johri, S.
Linke, N. M.
Landsman, K. A.
Huerta Alderete, C.
Nguyen, N. H.
Matsuura, A. Y.
Hsieh, T. H.
Monroe, C.
Generation of thermofield double states and critical ground states with a quantum computer
title Generation of thermofield double states and critical ground states with a quantum computer
title_full Generation of thermofield double states and critical ground states with a quantum computer
title_fullStr Generation of thermofield double states and critical ground states with a quantum computer
title_full_unstemmed Generation of thermofield double states and critical ground states with a quantum computer
title_short Generation of thermofield double states and critical ground states with a quantum computer
title_sort generation of thermofield double states and critical ground states with a quantum computer
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568272/
https://www.ncbi.nlm.nih.gov/pubmed/32989132
http://dx.doi.org/10.1073/pnas.2006337117
work_keys_str_mv AT zhud generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer
AT johris generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer
AT linkenm generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer
AT landsmanka generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer
AT huertaalderetec generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer
AT nguyennh generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer
AT matsuuraay generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer
AT hsiehth generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer
AT monroec generationofthermofielddoublestatesandcriticalgroundstateswithaquantumcomputer