Cargando…
Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress
BACKGROUND: Myocardial ischaemia-reperfusion injury (IRI) has been confirmed to induce endoplasmic reticulum stress (ERS) when myocardial cell function continues to deteriorate to a certain degree. The clinical applications of effective tested strategies are sometimes inconsistent with the applicati...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568428/ https://www.ncbi.nlm.nih.gov/pubmed/33116411 http://dx.doi.org/10.2147/DDDT.S265970 |
_version_ | 1783596517332877312 |
---|---|
author | Zhu, Zhipeng Ling, Xiaoyan Zhou, Hongmei Zhang, Caijun Yan, Weiwei |
author_facet | Zhu, Zhipeng Ling, Xiaoyan Zhou, Hongmei Zhang, Caijun Yan, Weiwei |
author_sort | Zhu, Zhipeng |
collection | PubMed |
description | BACKGROUND: Myocardial ischaemia-reperfusion injury (IRI) has been confirmed to induce endoplasmic reticulum stress (ERS) when myocardial cell function continues to deteriorate to a certain degree. The clinical applications of effective tested strategies are sometimes inconsistent with the applications evaluated in experiments, although reasonable mechanisms and diverse signalling pathways have been broadly explored. Dexmedetomidine (DEX) has been shown to attenuate IRI of the heart in animal studies. This study aimed to determine whether DEX can protect injured cardiomyocytes under hypoxia/reoxygenation (H/R) at the cellular level and whether the mechanism is related to ERS and the p38 MAPK pathway. METHODS: H9c2 cells were subjected to H/R or thapsigargin (TG) to build a model. DEX or 4-PBA was added to the medium either 1 h or 24 h before modelling, respectively. Model parameters were determined by assessing cell viability and injury, which were measured by assessing cell counting kit-8 (CCK8), lactate dehydrogenase (LDH) release and flow cytometry results, and the expression of GRP78, CHOP and caspase-12. In addition, the protein expression of p38MAPK and p-p38MAPK was examined, and SB202190, a negative regulator, was also preincubated in medium. RESULTS: Compared to that of cells in the control group, the activity of cells in the H/R and TG groups was decreased dramatically, and the LDH concentration and proportion of apoptotic cells were increased. DEX could correspondingly reverse the changes induced by H/R or TG. Additionally, DEX effectively attenuated ERS defined as increased expression of GRP78, CHOP and caspase-12. Additionally, DEX could obviously depress the P38 MAPK phosphorylation and high p-p38 MAPK expression in the TG group, indicating DEX has a function similar to that of SB202190. CONCLUSION: H/R injury in H9c2 cells can lead to abnormal ERS and apoptosis, as well as activation of the p38MAPK signalling pathway. DEX can protect cardiomyocytes by intervening in ERS, regulating p38MAPK and the downstream apoptotic signalling pathway. |
format | Online Article Text |
id | pubmed-7568428 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-75684282020-10-27 Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress Zhu, Zhipeng Ling, Xiaoyan Zhou, Hongmei Zhang, Caijun Yan, Weiwei Drug Des Devel Ther Original Research BACKGROUND: Myocardial ischaemia-reperfusion injury (IRI) has been confirmed to induce endoplasmic reticulum stress (ERS) when myocardial cell function continues to deteriorate to a certain degree. The clinical applications of effective tested strategies are sometimes inconsistent with the applications evaluated in experiments, although reasonable mechanisms and diverse signalling pathways have been broadly explored. Dexmedetomidine (DEX) has been shown to attenuate IRI of the heart in animal studies. This study aimed to determine whether DEX can protect injured cardiomyocytes under hypoxia/reoxygenation (H/R) at the cellular level and whether the mechanism is related to ERS and the p38 MAPK pathway. METHODS: H9c2 cells were subjected to H/R or thapsigargin (TG) to build a model. DEX or 4-PBA was added to the medium either 1 h or 24 h before modelling, respectively. Model parameters were determined by assessing cell viability and injury, which were measured by assessing cell counting kit-8 (CCK8), lactate dehydrogenase (LDH) release and flow cytometry results, and the expression of GRP78, CHOP and caspase-12. In addition, the protein expression of p38MAPK and p-p38MAPK was examined, and SB202190, a negative regulator, was also preincubated in medium. RESULTS: Compared to that of cells in the control group, the activity of cells in the H/R and TG groups was decreased dramatically, and the LDH concentration and proportion of apoptotic cells were increased. DEX could correspondingly reverse the changes induced by H/R or TG. Additionally, DEX effectively attenuated ERS defined as increased expression of GRP78, CHOP and caspase-12. Additionally, DEX could obviously depress the P38 MAPK phosphorylation and high p-p38 MAPK expression in the TG group, indicating DEX has a function similar to that of SB202190. CONCLUSION: H/R injury in H9c2 cells can lead to abnormal ERS and apoptosis, as well as activation of the p38MAPK signalling pathway. DEX can protect cardiomyocytes by intervening in ERS, regulating p38MAPK and the downstream apoptotic signalling pathway. Dove 2020-10-12 /pmc/articles/PMC7568428/ /pubmed/33116411 http://dx.doi.org/10.2147/DDDT.S265970 Text en © 2020 Zhu et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Zhu, Zhipeng Ling, Xiaoyan Zhou, Hongmei Zhang, Caijun Yan, Weiwei Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress |
title | Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress |
title_full | Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress |
title_fullStr | Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress |
title_full_unstemmed | Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress |
title_short | Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress |
title_sort | dexmedetomidine attenuates cellular injury and apoptosis in h9c2 cardiomyocytes by regulating p-38mapk and endoplasmic reticulum stress |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568428/ https://www.ncbi.nlm.nih.gov/pubmed/33116411 http://dx.doi.org/10.2147/DDDT.S265970 |
work_keys_str_mv | AT zhuzhipeng dexmedetomidineattenuatescellularinjuryandapoptosisinh9c2cardiomyocytesbyregulatingp38mapkandendoplasmicreticulumstress AT lingxiaoyan dexmedetomidineattenuatescellularinjuryandapoptosisinh9c2cardiomyocytesbyregulatingp38mapkandendoplasmicreticulumstress AT zhouhongmei dexmedetomidineattenuatescellularinjuryandapoptosisinh9c2cardiomyocytesbyregulatingp38mapkandendoplasmicreticulumstress AT zhangcaijun dexmedetomidineattenuatescellularinjuryandapoptosisinh9c2cardiomyocytesbyregulatingp38mapkandendoplasmicreticulumstress AT yanweiwei dexmedetomidineattenuatescellularinjuryandapoptosisinh9c2cardiomyocytesbyregulatingp38mapkandendoplasmicreticulumstress |