Cargando…
MetaCOVID: A Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients
Various AI functionalities such as pattern recognition and prediction can effectively be used to diagnose (recognize) and predict coronavirus disease 2019 (COVID-19) infections and propose timely response (remedial action) to minimize the spread and impact of the virus. Motivated by this, an AI syst...
Autores principales: | Shorfuzzaman, Mohammad, Hossain, M. Shamim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568501/ https://www.ncbi.nlm.nih.gov/pubmed/33100403 http://dx.doi.org/10.1016/j.patcog.2020.107700 |
Ejemplares similares
-
Cross-domain few-shot learning based on pseudo-Siamese neural network
por: Gong, Yuxuan, et al.
Publicado: (2023) -
CovidExpert: A Triplet Siamese Neural Network framework for the detection of COVID-19
por: Ornob, Tareque Rahman, et al.
Publicado: (2023) -
One shot ancient character recognition with siamese similarity network
por: Liu, Xuxing, et al.
Publicado: (2022) -
IoT-enabled stacked ensemble of deep neural networks for the diagnosis of COVID-19 using chest CT scans
por: Shorfuzzaman, Mohammad
Publicado: (2021) -
A Siamese Transformer Network for Zero-Shot Ancient Coin Classification
por: Guo, Zhongliang, et al.
Publicado: (2023)