Cargando…

Standardization and harmonization of distributed multi-center proteotype analysis supporting precision medicine studies

Cancer has no borders: Generation and analysis of molecular data across multiple centers worldwide is necessary to gain statistically significant clinical insights for the benefit of patients. Here we conceived and standardized a proteotype data generation and analysis workflow enabling distributed...

Descripción completa

Detalles Bibliográficos
Autores principales: Xuan, Yue, Bateman, Nicholas W., Gallien, Sebastien, Goetze, Sandra, Zhou, Yue, Navarro, Pedro, Hu, Mo, Parikh, Niyati, Hood, Brian L., Conrads, Kelly A., Loosse, Christina, Kitata, Reta Birhanu, Piersma, Sander R., Chiasserini, Davide, Zhu, Hongwen, Hou, Guixue, Tahir, Muhammad, Macklin, Andrew, Khoo, Amanda, Sun, Xiuxuan, Crossett, Ben, Sickmann, Albert, Chen, Yu-Ju, Jimenez, Connie R., Zhou, Hu, Liu, Siqi, Larsen, Martin R., Kislinger, Thomas, Chen, Zhinan, Parker, Benjamin L., Cordwell, Stuart J., Wollscheid, Bernd, Conrads, Thomas P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568553/
https://www.ncbi.nlm.nih.gov/pubmed/33067419
http://dx.doi.org/10.1038/s41467-020-18904-9
Descripción
Sumario:Cancer has no borders: Generation and analysis of molecular data across multiple centers worldwide is necessary to gain statistically significant clinical insights for the benefit of patients. Here we conceived and standardized a proteotype data generation and analysis workflow enabling distributed data generation and evaluated the quantitative data generated across laboratories of the international Cancer Moonshot consortium. Using harmonized mass spectrometry (MS) instrument platforms and standardized data acquisition procedures, we demonstrate robust, sensitive, and reproducible data generation across eleven international sites on seven consecutive days in a 24/7 operation mode. The data presented from the high-resolution MS1-based quantitative data-independent acquisition (HRMS1-DIA) workflow shows that coordinated proteotype data acquisition is feasible from clinical specimens using such standardized strategies. This work paves the way for the distributed multi-omic digitization of large clinical specimen cohorts across multiple sites as a prerequisite for turning molecular precision medicine into reality.