Cargando…

Reversible multicolor chromism in layered formamidinium metal halide perovskites

Metal halide perovskites feature crystalline-like electronic band structures and liquid-like physical properties. The crystal–liquid duality enables optoelectronic devices with unprecedented performance and a unique opportunity to chemically manipulate the structure with low energy input. In this wo...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosales, Bryan A., Mundt, Laura E., Allen, Taylor G., Moore, David T., Prince, Kevin J., Wolden, Colin A., Rumbles, Garry, Schelhas, Laura T., Wheeler, Lance M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568568/
https://www.ncbi.nlm.nih.gov/pubmed/33067460
http://dx.doi.org/10.1038/s41467-020-19009-z
_version_ 1783596547555983360
author Rosales, Bryan A.
Mundt, Laura E.
Allen, Taylor G.
Moore, David T.
Prince, Kevin J.
Wolden, Colin A.
Rumbles, Garry
Schelhas, Laura T.
Wheeler, Lance M.
author_facet Rosales, Bryan A.
Mundt, Laura E.
Allen, Taylor G.
Moore, David T.
Prince, Kevin J.
Wolden, Colin A.
Rumbles, Garry
Schelhas, Laura T.
Wheeler, Lance M.
author_sort Rosales, Bryan A.
collection PubMed
description Metal halide perovskites feature crystalline-like electronic band structures and liquid-like physical properties. The crystal–liquid duality enables optoelectronic devices with unprecedented performance and a unique opportunity to chemically manipulate the structure with low energy input. In this work, we leverage the low formation energy of metal halide perovskites to demonstrate multicolor reversible chromism. We synthesized layered Ruddlesden-Popper FA(n+1)Pb(n)X(3n+1) (FA = formamidinium, X = I, Br; n = number of layers = 1, 2, 3 … ∞) and reversibly tune the dimensionality (n) by modulating the strength and number of H-bonds in the system. H-bonding was controlled by exposure to solvent vapor (solvatochromism) or temperature change (thermochromism), which shuttles FAX salt pairs between the FA(n+1)Pb(n)X(3n+1) domains and adjacent FAX “reservoir” domains. Unlike traditional chromic materials that only offer a single-color transition, FA(n+1)Pb(n)X(3n+1) films reversibly switch between multiple colors including yellow, orange, red, brown, and white/colorless. Each colored phase exhibits distinct optoelectronic properties characteristic of 2D superlattice materials with tunable quantum well thickness.
format Online
Article
Text
id pubmed-7568568
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75685682020-10-21 Reversible multicolor chromism in layered formamidinium metal halide perovskites Rosales, Bryan A. Mundt, Laura E. Allen, Taylor G. Moore, David T. Prince, Kevin J. Wolden, Colin A. Rumbles, Garry Schelhas, Laura T. Wheeler, Lance M. Nat Commun Article Metal halide perovskites feature crystalline-like electronic band structures and liquid-like physical properties. The crystal–liquid duality enables optoelectronic devices with unprecedented performance and a unique opportunity to chemically manipulate the structure with low energy input. In this work, we leverage the low formation energy of metal halide perovskites to demonstrate multicolor reversible chromism. We synthesized layered Ruddlesden-Popper FA(n+1)Pb(n)X(3n+1) (FA = formamidinium, X = I, Br; n = number of layers = 1, 2, 3 … ∞) and reversibly tune the dimensionality (n) by modulating the strength and number of H-bonds in the system. H-bonding was controlled by exposure to solvent vapor (solvatochromism) or temperature change (thermochromism), which shuttles FAX salt pairs between the FA(n+1)Pb(n)X(3n+1) domains and adjacent FAX “reservoir” domains. Unlike traditional chromic materials that only offer a single-color transition, FA(n+1)Pb(n)X(3n+1) films reversibly switch between multiple colors including yellow, orange, red, brown, and white/colorless. Each colored phase exhibits distinct optoelectronic properties characteristic of 2D superlattice materials with tunable quantum well thickness. Nature Publishing Group UK 2020-10-16 /pmc/articles/PMC7568568/ /pubmed/33067460 http://dx.doi.org/10.1038/s41467-020-19009-z Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Rosales, Bryan A.
Mundt, Laura E.
Allen, Taylor G.
Moore, David T.
Prince, Kevin J.
Wolden, Colin A.
Rumbles, Garry
Schelhas, Laura T.
Wheeler, Lance M.
Reversible multicolor chromism in layered formamidinium metal halide perovskites
title Reversible multicolor chromism in layered formamidinium metal halide perovskites
title_full Reversible multicolor chromism in layered formamidinium metal halide perovskites
title_fullStr Reversible multicolor chromism in layered formamidinium metal halide perovskites
title_full_unstemmed Reversible multicolor chromism in layered formamidinium metal halide perovskites
title_short Reversible multicolor chromism in layered formamidinium metal halide perovskites
title_sort reversible multicolor chromism in layered formamidinium metal halide perovskites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568568/
https://www.ncbi.nlm.nih.gov/pubmed/33067460
http://dx.doi.org/10.1038/s41467-020-19009-z
work_keys_str_mv AT rosalesbryana reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites
AT mundtlaurae reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites
AT allentaylorg reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites
AT mooredavidt reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites
AT princekevinj reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites
AT woldencolina reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites
AT rumblesgarry reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites
AT schelhaslaurat reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites
AT wheelerlancem reversiblemulticolorchromisminlayeredformamidiniummetalhalideperovskites