Cargando…
Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics
The binding affinity and adhesive strength between the spike (S) glycoproteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the human angiotensin-converting enzyme 2 (ACE2) receptor is computed using molecular dynamics (MD) simulations. The calculations indicate that the...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568573/ https://www.ncbi.nlm.nih.gov/pubmed/33067518 http://dx.doi.org/10.1038/s41598-020-74189-4 |
_version_ | 1783596548721999872 |
---|---|
author | Ponga, Mauricio |
author_facet | Ponga, Mauricio |
author_sort | Ponga, Mauricio |
collection | PubMed |
description | The binding affinity and adhesive strength between the spike (S) glycoproteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the human angiotensin-converting enzyme 2 (ACE2) receptor is computed using molecular dynamics (MD) simulations. The calculations indicate that the binding affinity is [Formula: see text] [Formula: see text] with a maximum adhesive force of [Formula: see text] pN. Our analysis suggests that only 27 (13 in S-protein, 14 in ACE2) residues are active during the initial fusion process between the S-protein and ACE2 receptor. With these insights, we investigated the effect of possible therapeutics in the size and wrapping time of virus particles by reducing the binding energy. Our analysis indicates that this energy has to be reduced significantly, around 50% or more, to block SARS-CoV-2 particles with radius in the order of [Formula: see text] nm. Our study provides concise target residues and target binding energy reduction between S-proteins and receptors for the development of new therapeutics treatments for COVID-19 guided by computational design. |
format | Online Article Text |
id | pubmed-7568573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-75685732020-10-19 Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics Ponga, Mauricio Sci Rep Article The binding affinity and adhesive strength between the spike (S) glycoproteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the human angiotensin-converting enzyme 2 (ACE2) receptor is computed using molecular dynamics (MD) simulations. The calculations indicate that the binding affinity is [Formula: see text] [Formula: see text] with a maximum adhesive force of [Formula: see text] pN. Our analysis suggests that only 27 (13 in S-protein, 14 in ACE2) residues are active during the initial fusion process between the S-protein and ACE2 receptor. With these insights, we investigated the effect of possible therapeutics in the size and wrapping time of virus particles by reducing the binding energy. Our analysis indicates that this energy has to be reduced significantly, around 50% or more, to block SARS-CoV-2 particles with radius in the order of [Formula: see text] nm. Our study provides concise target residues and target binding energy reduction between S-proteins and receptors for the development of new therapeutics treatments for COVID-19 guided by computational design. Nature Publishing Group UK 2020-10-16 /pmc/articles/PMC7568573/ /pubmed/33067518 http://dx.doi.org/10.1038/s41598-020-74189-4 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Ponga, Mauricio Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics |
title | Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics |
title_full | Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics |
title_fullStr | Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics |
title_full_unstemmed | Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics |
title_short | Quantifying the adhesive strength between the SARS-CoV-2 S-proteins and human receptor and its effect in therapeutics |
title_sort | quantifying the adhesive strength between the sars-cov-2 s-proteins and human receptor and its effect in therapeutics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568573/ https://www.ncbi.nlm.nih.gov/pubmed/33067518 http://dx.doi.org/10.1038/s41598-020-74189-4 |
work_keys_str_mv | AT pongamauricio quantifyingtheadhesivestrengthbetweenthesarscov2sproteinsandhumanreceptoranditseffectintherapeutics |