Cargando…
Classification of aortic stenosis using conventional machine learning and deep learning methods based on multi-dimensional cardio-mechanical signals
This paper introduces a study on the classification of aortic stenosis (AS) based on cardio-mechanical signals collected using non-invasive wearable inertial sensors. Measurements were taken from 21 AS patients and 13 non-AS subjects. A feature analysis framework utilizing Elastic Net was implemente...
Autores principales: | Yang, Chenxi, Ojha, Banish D., Aranoff, Nicole D., Green, Philip, Tavassolian, Negar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568576/ https://www.ncbi.nlm.nih.gov/pubmed/33067495 http://dx.doi.org/10.1038/s41598-020-74519-6 |
Ejemplares similares
-
Efficient detection of aortic stenosis using morphological characteristics of cardiomechanical signals and heart rate variability parameters
por: Shokouhmand, Arash, et al.
Publicado: (2021) -
An Open-Access Database for the Evaluation of Cardio-Mechanical Signals From Patients With Valvular Heart Diseases
por: Yang, Chenxi, et al.
Publicado: (2021) -
Classification Techniques for Cardio-Vascular Diseases Using Supervised Machine Learning
por: Minou, John, et al.
Publicado: (2020) -
Predicting outcomes in patients with aortic stenosis using machine learning: the Aortic Stenosis Risk (ASteRisk) score
por: Namasivayam, Mayooran, et al.
Publicado: (2022) -
Machine learning prediction of progressive subclinical myocardial dysfunction in moderate aortic stenosis
por: Namasivayam, Mayooran, et al.
Publicado: (2023)