Cargando…

Explicit Correlation Amplifiers for Finding Outlier Correlations in Deterministic Subquadratic Time

We derandomize Valiant’s (J ACM 62, Article 13, 2015) subquadratic-time algorithm for finding outlier correlations in binary data. This demonstrates that it is possible to perform a deterministic subquadratic-time similarity join of high dimensionality. Our derandomized algorithm gives deterministic...

Descripción completa

Detalles Bibliográficos
Autores principales: Karppa, Matti, Kaski, Petteri, Kohonen, Jukka, Ó Catháin, Padraig
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568719/
https://www.ncbi.nlm.nih.gov/pubmed/33088007
http://dx.doi.org/10.1007/s00453-020-00727-1
Descripción
Sumario:We derandomize Valiant’s (J ACM 62, Article 13, 2015) subquadratic-time algorithm for finding outlier correlations in binary data. This demonstrates that it is possible to perform a deterministic subquadratic-time similarity join of high dimensionality. Our derandomized algorithm gives deterministic subquadratic scaling essentially for the same parameter range as Valiant’s randomized algorithm, but the precise constants we save over quadratic scaling are more modest. Our main technical tool for derandomization is an explicit family of correlation amplifiers built via a family of zigzag-product expanders by Reingold et al. (Ann Math 155(1):157–187, 2002). We say that a function [Formula: see text] is a correlation amplifier with threshold [Formula: see text] , error [Formula: see text] , and strength p an even positive integer if for all pairs of vectors [Formula: see text] it holds that (i) [Formula: see text] implies [Formula: see text] ; and (ii) [Formula: see text] implies [Formula: see text] .