Cargando…
Renin-angiotensin system at the interface of COVID-19 infection
Angiotensin-converting enzyme 2 (ACE2) has been recognized as a potential entry receptor for SARS-CoV-2 infection. Binding of SARS-CoV-2 to ACE2 allows engagement with pulmonary epithelial cells and pulmonary infection with the virus. ACE2 is an essential component of renin-angiotensin system (RAS),...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568848/ https://www.ncbi.nlm.nih.gov/pubmed/33086029 http://dx.doi.org/10.1016/j.ejphar.2020.173656 |
Sumario: | Angiotensin-converting enzyme 2 (ACE2) has been recognized as a potential entry receptor for SARS-CoV-2 infection. Binding of SARS-CoV-2 to ACE2 allows engagement with pulmonary epithelial cells and pulmonary infection with the virus. ACE2 is an essential component of renin-angiotensin system (RAS), and involved in promoting protective effects to counter-regulate angiotensin (Ang) II-induced pathogenesis. The use of angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEIs) was implicitly negated during the early phase of COVID-19 pandemic, considering the role of these antihypertensive agents in enhancing ACE2 expression thereby promoting the susceptibility to SARS-CoV-2. However, no clinical data has supported this assumption, but indeed evidence demonstrates that ACEIs and ARBs, besides their cardioprotective effects in COVID-19 patients with cardiovascular diseases, might also be beneficial in acute lung injuries by preserving the ACE2 function and switching the balance from deleterious ACE/Ang II/AT(1) receptor axis towards a protective ACE2/Ang (1–7)/Mas receptor axis. |
---|