_version_ 1783596636228812800
author Jang, Su-Kyeong
Chang, Jun Young
Lee, Ji Sung
Lee, Eun-Jae
Kim, Yong-Hwan
Han, Jung Hoon
Chang, Dae-Il
Cho, Han Jin
Cha, Jae-Kwan
Yu, Kyung Ho
Jung, Jin-Man
Ahn, Seong Hwan
Kim, Dong-Eog
Sohn, Sung-Il
Lee, Ju Hun
Park, Kyung-Pil
Kwon, Sun U.
Kim, Jong S.
Kang, Dong-Wha
author_facet Jang, Su-Kyeong
Chang, Jun Young
Lee, Ji Sung
Lee, Eun-Jae
Kim, Yong-Hwan
Han, Jung Hoon
Chang, Dae-Il
Cho, Han Jin
Cha, Jae-Kwan
Yu, Kyung Ho
Jung, Jin-Man
Ahn, Seong Hwan
Kim, Dong-Eog
Sohn, Sung-Il
Lee, Ju Hun
Park, Kyung-Pil
Kwon, Sun U.
Kim, Jong S.
Kang, Dong-Wha
author_sort Jang, Su-Kyeong
collection PubMed
description
format Online
Article
Text
id pubmed-7568985
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Korean Stroke Society
record_format MEDLINE/PubMed
spelling pubmed-75689852020-10-22 Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression Jang, Su-Kyeong Chang, Jun Young Lee, Ji Sung Lee, Eun-Jae Kim, Yong-Hwan Han, Jung Hoon Chang, Dae-Il Cho, Han Jin Cha, Jae-Kwan Yu, Kyung Ho Jung, Jin-Man Ahn, Seong Hwan Kim, Dong-Eog Sohn, Sung-Il Lee, Ju Hun Park, Kyung-Pil Kwon, Sun U. Kim, Jong S. Kang, Dong-Wha J Stroke Letter to the Editor Korean Stroke Society 2020-09 2020-09-29 /pmc/articles/PMC7568985/ /pubmed/33053956 http://dx.doi.org/10.5853/jos.2020.02537 Text en Copyright © 2020 Korean Stroke Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Letter to the Editor
Jang, Su-Kyeong
Chang, Jun Young
Lee, Ji Sung
Lee, Eun-Jae
Kim, Yong-Hwan
Han, Jung Hoon
Chang, Dae-Il
Cho, Han Jin
Cha, Jae-Kwan
Yu, Kyung Ho
Jung, Jin-Man
Ahn, Seong Hwan
Kim, Dong-Eog
Sohn, Sung-Il
Lee, Ju Hun
Park, Kyung-Pil
Kwon, Sun U.
Kim, Jong S.
Kang, Dong-Wha
Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_full Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_fullStr Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_full_unstemmed Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_short Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_sort reliability and clinical utility of machine learning to predict stroke prognosis: comparison with logistic regression
topic Letter to the Editor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568985/
https://www.ncbi.nlm.nih.gov/pubmed/33053956
http://dx.doi.org/10.5853/jos.2020.02537
work_keys_str_mv AT jangsukyeong reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT changjunyoung reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT leejisung reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT leeeunjae reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT kimyonghwan reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT hanjunghoon reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT changdaeil reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT chohanjin reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT chajaekwan reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT yukyungho reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT jungjinman reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT ahnseonghwan reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT kimdongeog reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT sohnsungil reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT leejuhun reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT parkkyungpil reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT kwonsunu reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT kimjongs reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT kangdongwha reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression