Cargando…
Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Stroke Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568985/ https://www.ncbi.nlm.nih.gov/pubmed/33053956 http://dx.doi.org/10.5853/jos.2020.02537 |
_version_ | 1783596636228812800 |
---|---|
author | Jang, Su-Kyeong Chang, Jun Young Lee, Ji Sung Lee, Eun-Jae Kim, Yong-Hwan Han, Jung Hoon Chang, Dae-Il Cho, Han Jin Cha, Jae-Kwan Yu, Kyung Ho Jung, Jin-Man Ahn, Seong Hwan Kim, Dong-Eog Sohn, Sung-Il Lee, Ju Hun Park, Kyung-Pil Kwon, Sun U. Kim, Jong S. Kang, Dong-Wha |
author_facet | Jang, Su-Kyeong Chang, Jun Young Lee, Ji Sung Lee, Eun-Jae Kim, Yong-Hwan Han, Jung Hoon Chang, Dae-Il Cho, Han Jin Cha, Jae-Kwan Yu, Kyung Ho Jung, Jin-Man Ahn, Seong Hwan Kim, Dong-Eog Sohn, Sung-Il Lee, Ju Hun Park, Kyung-Pil Kwon, Sun U. Kim, Jong S. Kang, Dong-Wha |
author_sort | Jang, Su-Kyeong |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-7568985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Korean Stroke Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75689852020-10-22 Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression Jang, Su-Kyeong Chang, Jun Young Lee, Ji Sung Lee, Eun-Jae Kim, Yong-Hwan Han, Jung Hoon Chang, Dae-Il Cho, Han Jin Cha, Jae-Kwan Yu, Kyung Ho Jung, Jin-Man Ahn, Seong Hwan Kim, Dong-Eog Sohn, Sung-Il Lee, Ju Hun Park, Kyung-Pil Kwon, Sun U. Kim, Jong S. Kang, Dong-Wha J Stroke Letter to the Editor Korean Stroke Society 2020-09 2020-09-29 /pmc/articles/PMC7568985/ /pubmed/33053956 http://dx.doi.org/10.5853/jos.2020.02537 Text en Copyright © 2020 Korean Stroke Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Letter to the Editor Jang, Su-Kyeong Chang, Jun Young Lee, Ji Sung Lee, Eun-Jae Kim, Yong-Hwan Han, Jung Hoon Chang, Dae-Il Cho, Han Jin Cha, Jae-Kwan Yu, Kyung Ho Jung, Jin-Man Ahn, Seong Hwan Kim, Dong-Eog Sohn, Sung-Il Lee, Ju Hun Park, Kyung-Pil Kwon, Sun U. Kim, Jong S. Kang, Dong-Wha Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression |
title | Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression |
title_full | Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression |
title_fullStr | Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression |
title_full_unstemmed | Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression |
title_short | Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression |
title_sort | reliability and clinical utility of machine learning to predict stroke prognosis: comparison with logistic regression |
topic | Letter to the Editor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568985/ https://www.ncbi.nlm.nih.gov/pubmed/33053956 http://dx.doi.org/10.5853/jos.2020.02537 |
work_keys_str_mv | AT jangsukyeong reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT changjunyoung reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT leejisung reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT leeeunjae reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT kimyonghwan reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT hanjunghoon reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT changdaeil reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT chohanjin reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT chajaekwan reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT yukyungho reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT jungjinman reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT ahnseonghwan reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT kimdongeog reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT sohnsungil reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT leejuhun reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT parkkyungpil reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT kwonsunu reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT kimjongs reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT kangdongwha reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression AT reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression |