Cargando…
Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
Autores principales: | Jang, Su-Kyeong, Chang, Jun Young, Lee, Ji Sung, Lee, Eun-Jae, Kim, Yong-Hwan, Han, Jung Hoon, Chang, Dae-Il, Cho, Han Jin, Cha, Jae-Kwan, Yu, Kyung Ho, Jung, Jin-Man, Ahn, Seong Hwan, Kim, Dong-Eog, Sohn, Sung-Il, Lee, Ju Hun, Park, Kyung-Pil, Kwon, Sun U., Kim, Jong S., Kang, Dong-Wha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Stroke Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568985/ https://www.ncbi.nlm.nih.gov/pubmed/33053956 http://dx.doi.org/10.5853/jos.2020.02537 |
Ejemplares similares
-
Prediction of breast cancer-related lymphedema risk after postoperative radiotherapy via multivariable logistic regression analysis
por: Kim, Jae Sik, et al.
Publicado: (2022) -
Long-Term Changes in Post-Stroke Depression, Emotional Incontinence, and Anger
por: Kwon, Boseong, et al.
Publicado: (2021) -
Early Administration of Edoxaban After Acute Ischemic Stroke in Patients With Non-valvular Atrial Fibrillation: A Pilot Randomized Trial
por: Kim, Jong S., et al.
Publicado: (2023) -
Diverting ileostomy itself may not increase the rate of postoperative readmission related to dehydration after low anterior resection
por: Park, Sung Sil, et al.
Publicado: (2021) -
Preoperative Tattooing Using Indocyanine Green in Laparoscopic Colorectal Surgery
por: Lee, Sang Jae, et al.
Publicado: (2018)