Cargando…

von Willebrand factor promotes platelet-induced metastasis of osteosarcoma through activation of the VWF-GPIb axis

von Willebrand factor (VWF) is exclusively expressed in endothelial cells (ECs) and megakaryocytes, which plays a crucial role in the initiation of arterial thrombosis. Recent studies have shown that VWF is also expressed in osteosarcoma (OS) cells and participates in adhesion of cancer cells to pla...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Q., Liu, W., Fan, J., Guo, J., Shen, F., Ma, Z., Ruan, C., Guo, L., Jiang, M., Zhao, Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569326/
https://www.ncbi.nlm.nih.gov/pubmed/33101888
http://dx.doi.org/10.1016/j.jbo.2020.100325
Descripción
Sumario:von Willebrand factor (VWF) is exclusively expressed in endothelial cells (ECs) and megakaryocytes, which plays a crucial role in the initiation of arterial thrombosis. Recent studies have shown that VWF is also expressed in osteosarcoma (OS) cells and participates in adhesion of cancer cells to platelets, thus promoting metastasis of OS cells. However, it is unclear how OS cell-derived VWF-platelet interaction contributes to the metastasis of OS. We hypothesized that the interaction is mediated by the binding between VWF A1 and GPIbα of platelets, a molecular mechanism similar to that of thrombosis. The increased expression of VWF in SAOS2 cells may contribute to the enhancement of platelet adhesion through the VWF-GPIb pathway, which could promote the migration and invasion capacities of SAOS2 cells in vitro. Antibodies that block the pathway could significantly inhibit the platelet-induced metastasis of OS cells. Our results suggest a theoretical basis for the development of new anti-OS metastasis drugs, and further enrich the mechanism of OS metastasis.