Cargando…
Neuroprotective Effects of OMO within the Hippocampus and Cortex in a D-Galactose and Aβ(25–35)-Induced Rat Model of Alzheimer's Disease
Morinda officinalis F.C. How. (Rubiaceae) is a herbal medicine. It has been recorded that its oligosaccharides have neuroprotective properties. In order to understand the oligosaccharides extracted from Morinda officinalis (OMO), a systematic study was conducted to provide evidence that supports its...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569426/ https://www.ncbi.nlm.nih.gov/pubmed/33101436 http://dx.doi.org/10.1155/2020/1067541 |
Sumario: | Morinda officinalis F.C. How. (Rubiaceae) is a herbal medicine. It has been recorded that its oligosaccharides have neuroprotective properties. In order to understand the oligosaccharides extracted from Morinda officinalis (OMO), a systematic study was conducted to provide evidence that supports its use in neuroprotective therapies for Alzheimer's disease (AD). AD rat models were prepared with D-galactose and Aβ(25–35). The following groups were used in the present experiment: normal control group, sham-operated group, model group, Aricept group, OMO low-dose group, OMO medium-dose group, and OMO high-dose group. The effects on behavioral tests, antioxidant levels, energy metabolism, neurotransmitter levels, and AD-related proteins were detected with corresponding methodologies. AD rats administered with different doses of OMO all exhibited a significant (P < 0.05) decrease in latency and an increase (P < 0.05) in the ratio of swimming distance to total distance in a dose-dependent manner in the Morris water maze. There was a significant (P < 0.05) increase in antioxidant enzyme activities (SOD, GSH-Px, and CAT), neurotransmitter levels (acetylcholine, γ-GABA, and NE and DA), energy metabolism (Na(+)/K(+)-ATPase), and relative synaptophysin (SYP) expression levels in AD rats administered with OMO. Furthermore, there was a significant (P < 0.05) decrease in MDA levels and relative expression levels of APP, tau, and caspase-3 in AD rats with OMO. The present research suggests that OMO protects against D-galactose and Aβ(25–35)-induced neurodegeneration, which may provide a novel strategy for improving AD in clinic. |
---|