Cargando…
Retinal Vessel Segmentation by Deep Residual Learning with Wide Activation
PURPOSE: Retinal blood vessel image segmentation is an important step in ophthalmological analysis. However, it is difficult to segment small vessels accurately because of low contrast and complex feature information of blood vessels. The objective of this study is to develop an improved retinal blo...
Autores principales: | Ma, Yuliang, Li, Xue, Duan, Xiaopeng, Peng, Yun, Zhang, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569427/ https://www.ncbi.nlm.nih.gov/pubmed/33101403 http://dx.doi.org/10.1155/2020/8822407 |
Ejemplares similares
-
RFARN: Retinal vessel segmentation based on reverse fusion attention residual network
por: Liu, Wenhuan, et al.
Publicado: (2021) -
Retinal Vessel Segmentation Algorithm Based on Residual Convolution Neural Network
por: Xu, Shuang, et al.
Publicado: (2021) -
Artificial Intelligence in Ophthalmology: A Meta-Analysis of Deep Learning Models for Retinal Vessels Segmentation
por: Islam, Md. Mohaimenul, et al.
Publicado: (2020) -
Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
por: Wu, Jin, et al.
Publicado: (2022) -
Multichannel Retinal Blood Vessel Segmentation Based on the Combination of Matched Filter and U-Net Network
por: Ma, Yuliang, et al.
Publicado: (2021)