Cargando…

Change in Tetracene Polymorphism Facilitates Triplet Transfer in Singlet Fission-Sensitized Silicon Solar Cells

[Image: see text] Singlet fission in tetracene generates two triplet excitons per absorbed photon. If these triplet excitons can be effectively transferred into silicon (Si), then additional photocurrent can be generated from photons above the bandgap of Si. This could alleviate the thermalization l...

Descripción completa

Detalles Bibliográficos
Autores principales: Daiber, Benjamin, Maiti, Sourav, Ferro, Silvia M., Bodin, Joris, van den Boom, Alyssa F. J., Luxembourg, Stefan L., Kinge, Sachin, Pujari, Sidharam P., Zuilhof, Han, Siebbeles, Laurens D. A., Ehrler, Bruno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569671/
https://www.ncbi.nlm.nih.gov/pubmed/32959663
http://dx.doi.org/10.1021/acs.jpclett.0c02163
Descripción
Sumario:[Image: see text] Singlet fission in tetracene generates two triplet excitons per absorbed photon. If these triplet excitons can be effectively transferred into silicon (Si), then additional photocurrent can be generated from photons above the bandgap of Si. This could alleviate the thermalization loss and increase the efficiency of conventional Si solar cells. Here, we show that a change in the polymorphism of tetracene deposited on Si due to air exposure facilitates triplet transfer from tetracene into Si. Magnetic field-dependent photocurrent measurements confirm that triplet excitons contribute to the photocurrent. The decay of tetracene delayed photoluminescence was used to determine a transfer efficiency of ∼36% into Si. Our study suggests that control over the morphology of tetracene during the deposition will be of great importance to boost the triplet transfer yield further.