Cargando…

Ficus microcarpa Bonsai “Tiger bark” Parasitized by the Root-Knot Nematode Meloidogyne javanica and the Spiral Nematode Helicotylenchus dihystera, a New Plant Host Record for Both Species

In December 2017, a Ficus microcarpa “Tiger bark” bonsai tree was acquired in a shopping center in Coimbra, Portugal, without symptoms in the leaves, but showing small atypical galls of infection caused by root-knot nematodes (RKN), Meloidogyne spp. The soil nematode community was assessed and four...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, Duarte, Abrantes, Isabel, Maleita, Carla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569956/
https://www.ncbi.nlm.nih.gov/pubmed/32846993
http://dx.doi.org/10.3390/plants9091085
Descripción
Sumario:In December 2017, a Ficus microcarpa “Tiger bark” bonsai tree was acquired in a shopping center in Coimbra, Portugal, without symptoms in the leaves, but showing small atypical galls of infection caused by root-knot nematodes (RKN), Meloidogyne spp. The soil nematode community was assessed and four Tylenchida genera were detected: Helicotylenchus (94.02%), Tylenchus s.l. (4.35%), Tylenchorynchus s.l. (1.09%) and Meloidogyne (0.54%). The RKN M. javanica was identified through analysis of esterase isoenzyme phenotype (J3), PCR-RFLP of mitochondrial DNA region between COII and 16S rRNA genes and SCAR-PCR. The Helicotylenchus species was identified on the basis of female morphology that showed the body being spirally curved, with up to two turns after relation with gentle heat, a key feature of H. dihystera, and molecular characterization, using the D2D3 expansion region of the 28S rDNA, which revealed a similarity of 99.99% with available sequences of the common spiral nematode H. dihystera. To our knowledge, M. javanica and H. dihystera are reported for the first time as parasitizing F. microcarpa. Our findings reveal that more inspections are required to detect these and other plant-parasitic nematodes, mainly with quarantine status, to prevent their spread if found.