Cargando…

Seed Dormancy Breaking and Germination in Bituminaria basaltica and B. bituminosa (Fabaceae)

Most legumes are well-known for the physical dormancy of their seeds; hence, the implementation of appropriate scarification techniques is essential for introducing new legume crops within agricultural systems. This study investigated morpho-anatomical traits and dormancy-breaking requirements in tw...

Descripción completa

Detalles Bibliográficos
Autores principales: Carruggio, Francesca, Onofri, Andrea, Impelluso, Carmen, Giusso del Galdo, Gianpietro, Scopece, Giovanni, Cristaudo, Antonia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570033/
https://www.ncbi.nlm.nih.gov/pubmed/32867404
http://dx.doi.org/10.3390/plants9091110
Descripción
Sumario:Most legumes are well-known for the physical dormancy of their seeds; hence, the implementation of appropriate scarification techniques is essential for introducing new legume crops within agricultural systems. This study investigated morpho-anatomical traits and dormancy-breaking requirements in two taxa of the genus Bituminaria: the widespread B. bituminosa and the point endemic B. basaltica. As the species under investigation show monospermic indehiscent legumes, pods were used in this research. We performed pod trait measurements, light microscopy observations on the seed coat anatomical structure, and germination tests after mechanical, thermal, and chemical scarification treatments for seed dormancy breaking. Moreover, germination performance at different pod maturity stages and storage times was tested. Differences in morpho-anatomical traits were found, with B. basaltica having a thicker palisade cell layer and B. bituminosa showing larger pods. All of the scarification treatments proved to be able to break physical dormancy, with mechanical and chemical scarification being the most effective methods in both species. Nevertheless, dormancy-breaking treatments performed better in B. bituminosa. Seeds at early pod maturity stages showed higher germination capacity in both species. Overall, this research provided background knowledge on seed collection time, storage strategy, and effective pre-sowing treatment, which might contribute to enhance propagation and use of Bituminaria species for multiple purposes. Under this perspective, the future characterization of additional Bituminaria genetic resources from other Mediterranean populations will have remarkable importance.