Cargando…
Genome-enabled insights into the biology of thrips as crop pests
BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecolo...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570057/ https://www.ncbi.nlm.nih.gov/pubmed/33070780 http://dx.doi.org/10.1186/s12915-020-00862-9 |
_version_ | 1783596861684187136 |
---|---|
author | Rotenberg, Dorith Baumann, Aaron A. Ben-Mahmoud, Sulley Christiaens, Olivier Dermauw, Wannes Ioannidis, Panagiotis Jacobs, Chris G. C. Vargas Jentzsch, Iris M. Oliver, Jonathan E. Poelchau, Monica F. Rajarapu, Swapna Priya Schneweis, Derek J. Snoeck, Simon Taning, Clauvis N. T. Wei, Dong Widana Gamage, Shirani M. K. Hughes, Daniel S. T. Murali, Shwetha C. Bailey, Samuel T. Bejerman, Nicolas E. Holmes, Christopher J. Jennings, Emily C. Rosendale, Andrew J. Rosselot, Andrew Hervey, Kaylee Schneweis, Brandi A. Cheng, Sammy Childers, Christopher Simão, Felipe A. Dietzgen, Ralf G. Chao, Hsu Dinh, Huyen Doddapaneni, Harsha Vardhan Dugan, Shannon Han, Yi Lee, Sandra L. Muzny, Donna M. Qu, Jiaxin Worley, Kim C. Benoit, Joshua B. Friedrich, Markus Jones, Jeffery W. Panfilio, Kristen A. Park, Yoonseong Robertson, Hugh M. Smagghe, Guy Ullman, Diane E. van der Zee, Maurijn Van Leeuwen, Thomas Veenstra, Jan A. Waterhouse, Robert M. Weirauch, Matthew T. Werren, John H. Whitfield, Anna E. Zdobnov, Evgeny M. Gibbs, Richard A. Richards, Stephen |
author_facet | Rotenberg, Dorith Baumann, Aaron A. Ben-Mahmoud, Sulley Christiaens, Olivier Dermauw, Wannes Ioannidis, Panagiotis Jacobs, Chris G. C. Vargas Jentzsch, Iris M. Oliver, Jonathan E. Poelchau, Monica F. Rajarapu, Swapna Priya Schneweis, Derek J. Snoeck, Simon Taning, Clauvis N. T. Wei, Dong Widana Gamage, Shirani M. K. Hughes, Daniel S. T. Murali, Shwetha C. Bailey, Samuel T. Bejerman, Nicolas E. Holmes, Christopher J. Jennings, Emily C. Rosendale, Andrew J. Rosselot, Andrew Hervey, Kaylee Schneweis, Brandi A. Cheng, Sammy Childers, Christopher Simão, Felipe A. Dietzgen, Ralf G. Chao, Hsu Dinh, Huyen Doddapaneni, Harsha Vardhan Dugan, Shannon Han, Yi Lee, Sandra L. Muzny, Donna M. Qu, Jiaxin Worley, Kim C. Benoit, Joshua B. Friedrich, Markus Jones, Jeffery W. Panfilio, Kristen A. Park, Yoonseong Robertson, Hugh M. Smagghe, Guy Ullman, Diane E. van der Zee, Maurijn Van Leeuwen, Thomas Veenstra, Jan A. Waterhouse, Robert M. Weirauch, Matthew T. Werren, John H. Whitfield, Anna E. Zdobnov, Evgeny M. Gibbs, Richard A. Richards, Stephen |
author_sort | Rotenberg, Dorith |
collection | PubMed |
description | BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species. |
format | Online Article Text |
id | pubmed-7570057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-75700572020-10-20 Genome-enabled insights into the biology of thrips as crop pests Rotenberg, Dorith Baumann, Aaron A. Ben-Mahmoud, Sulley Christiaens, Olivier Dermauw, Wannes Ioannidis, Panagiotis Jacobs, Chris G. C. Vargas Jentzsch, Iris M. Oliver, Jonathan E. Poelchau, Monica F. Rajarapu, Swapna Priya Schneweis, Derek J. Snoeck, Simon Taning, Clauvis N. T. Wei, Dong Widana Gamage, Shirani M. K. Hughes, Daniel S. T. Murali, Shwetha C. Bailey, Samuel T. Bejerman, Nicolas E. Holmes, Christopher J. Jennings, Emily C. Rosendale, Andrew J. Rosselot, Andrew Hervey, Kaylee Schneweis, Brandi A. Cheng, Sammy Childers, Christopher Simão, Felipe A. Dietzgen, Ralf G. Chao, Hsu Dinh, Huyen Doddapaneni, Harsha Vardhan Dugan, Shannon Han, Yi Lee, Sandra L. Muzny, Donna M. Qu, Jiaxin Worley, Kim C. Benoit, Joshua B. Friedrich, Markus Jones, Jeffery W. Panfilio, Kristen A. Park, Yoonseong Robertson, Hugh M. Smagghe, Guy Ullman, Diane E. van der Zee, Maurijn Van Leeuwen, Thomas Veenstra, Jan A. Waterhouse, Robert M. Weirauch, Matthew T. Werren, John H. Whitfield, Anna E. Zdobnov, Evgeny M. Gibbs, Richard A. Richards, Stephen BMC Biol Research Article BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species. BioMed Central 2020-10-19 /pmc/articles/PMC7570057/ /pubmed/33070780 http://dx.doi.org/10.1186/s12915-020-00862-9 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Rotenberg, Dorith Baumann, Aaron A. Ben-Mahmoud, Sulley Christiaens, Olivier Dermauw, Wannes Ioannidis, Panagiotis Jacobs, Chris G. C. Vargas Jentzsch, Iris M. Oliver, Jonathan E. Poelchau, Monica F. Rajarapu, Swapna Priya Schneweis, Derek J. Snoeck, Simon Taning, Clauvis N. T. Wei, Dong Widana Gamage, Shirani M. K. Hughes, Daniel S. T. Murali, Shwetha C. Bailey, Samuel T. Bejerman, Nicolas E. Holmes, Christopher J. Jennings, Emily C. Rosendale, Andrew J. Rosselot, Andrew Hervey, Kaylee Schneweis, Brandi A. Cheng, Sammy Childers, Christopher Simão, Felipe A. Dietzgen, Ralf G. Chao, Hsu Dinh, Huyen Doddapaneni, Harsha Vardhan Dugan, Shannon Han, Yi Lee, Sandra L. Muzny, Donna M. Qu, Jiaxin Worley, Kim C. Benoit, Joshua B. Friedrich, Markus Jones, Jeffery W. Panfilio, Kristen A. Park, Yoonseong Robertson, Hugh M. Smagghe, Guy Ullman, Diane E. van der Zee, Maurijn Van Leeuwen, Thomas Veenstra, Jan A. Waterhouse, Robert M. Weirauch, Matthew T. Werren, John H. Whitfield, Anna E. Zdobnov, Evgeny M. Gibbs, Richard A. Richards, Stephen Genome-enabled insights into the biology of thrips as crop pests |
title | Genome-enabled insights into the biology of thrips as crop pests |
title_full | Genome-enabled insights into the biology of thrips as crop pests |
title_fullStr | Genome-enabled insights into the biology of thrips as crop pests |
title_full_unstemmed | Genome-enabled insights into the biology of thrips as crop pests |
title_short | Genome-enabled insights into the biology of thrips as crop pests |
title_sort | genome-enabled insights into the biology of thrips as crop pests |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570057/ https://www.ncbi.nlm.nih.gov/pubmed/33070780 http://dx.doi.org/10.1186/s12915-020-00862-9 |
work_keys_str_mv | AT rotenbergdorith genomeenabledinsightsintothebiologyofthripsascroppests AT baumannaarona genomeenabledinsightsintothebiologyofthripsascroppests AT benmahmoudsulley genomeenabledinsightsintothebiologyofthripsascroppests AT christiaensolivier genomeenabledinsightsintothebiologyofthripsascroppests AT dermauwwannes genomeenabledinsightsintothebiologyofthripsascroppests AT ioannidispanagiotis genomeenabledinsightsintothebiologyofthripsascroppests AT jacobschrisgc genomeenabledinsightsintothebiologyofthripsascroppests AT vargasjentzschirism genomeenabledinsightsintothebiologyofthripsascroppests AT oliverjonathane genomeenabledinsightsintothebiologyofthripsascroppests AT poelchaumonicaf genomeenabledinsightsintothebiologyofthripsascroppests AT rajarapuswapnapriya genomeenabledinsightsintothebiologyofthripsascroppests AT schneweisderekj genomeenabledinsightsintothebiologyofthripsascroppests AT snoecksimon genomeenabledinsightsintothebiologyofthripsascroppests AT taningclauvisnt genomeenabledinsightsintothebiologyofthripsascroppests AT weidong genomeenabledinsightsintothebiologyofthripsascroppests AT widanagamageshiranimk genomeenabledinsightsintothebiologyofthripsascroppests AT hughesdanielst genomeenabledinsightsintothebiologyofthripsascroppests AT muralishwethac genomeenabledinsightsintothebiologyofthripsascroppests AT baileysamuelt genomeenabledinsightsintothebiologyofthripsascroppests AT bejermannicolase genomeenabledinsightsintothebiologyofthripsascroppests AT holmeschristopherj genomeenabledinsightsintothebiologyofthripsascroppests AT jenningsemilyc genomeenabledinsightsintothebiologyofthripsascroppests AT rosendaleandrewj genomeenabledinsightsintothebiologyofthripsascroppests AT rosselotandrew genomeenabledinsightsintothebiologyofthripsascroppests AT herveykaylee genomeenabledinsightsintothebiologyofthripsascroppests AT schneweisbrandia genomeenabledinsightsintothebiologyofthripsascroppests AT chengsammy genomeenabledinsightsintothebiologyofthripsascroppests AT childerschristopher genomeenabledinsightsintothebiologyofthripsascroppests AT simaofelipea genomeenabledinsightsintothebiologyofthripsascroppests AT dietzgenralfg genomeenabledinsightsintothebiologyofthripsascroppests AT chaohsu genomeenabledinsightsintothebiologyofthripsascroppests AT dinhhuyen genomeenabledinsightsintothebiologyofthripsascroppests AT doddapaneniharshavardhan genomeenabledinsightsintothebiologyofthripsascroppests AT duganshannon genomeenabledinsightsintothebiologyofthripsascroppests AT hanyi genomeenabledinsightsintothebiologyofthripsascroppests AT leesandral genomeenabledinsightsintothebiologyofthripsascroppests AT muznydonnam genomeenabledinsightsintothebiologyofthripsascroppests AT qujiaxin genomeenabledinsightsintothebiologyofthripsascroppests AT worleykimc genomeenabledinsightsintothebiologyofthripsascroppests AT benoitjoshuab genomeenabledinsightsintothebiologyofthripsascroppests AT friedrichmarkus genomeenabledinsightsintothebiologyofthripsascroppests AT jonesjefferyw genomeenabledinsightsintothebiologyofthripsascroppests AT panfiliokristena genomeenabledinsightsintothebiologyofthripsascroppests AT parkyoonseong genomeenabledinsightsintothebiologyofthripsascroppests AT robertsonhughm genomeenabledinsightsintothebiologyofthripsascroppests AT smaggheguy genomeenabledinsightsintothebiologyofthripsascroppests AT ullmandianee genomeenabledinsightsintothebiologyofthripsascroppests AT vanderzeemaurijn genomeenabledinsightsintothebiologyofthripsascroppests AT vanleeuwenthomas genomeenabledinsightsintothebiologyofthripsascroppests AT veenstrajana genomeenabledinsightsintothebiologyofthripsascroppests AT waterhouserobertm genomeenabledinsightsintothebiologyofthripsascroppests AT weirauchmatthewt genomeenabledinsightsintothebiologyofthripsascroppests AT werrenjohnh genomeenabledinsightsintothebiologyofthripsascroppests AT whitfieldannae genomeenabledinsightsintothebiologyofthripsascroppests AT zdobnovevgenym genomeenabledinsightsintothebiologyofthripsascroppests AT gibbsricharda genomeenabledinsightsintothebiologyofthripsascroppests AT richardsstephen genomeenabledinsightsintothebiologyofthripsascroppests |