Cargando…
Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops
The present study aimed at identifying and mapping key genes expressed in root tissues involved in drought and salinity tolerance/resistance conserved among different fruit tree species. Twenty-six RNA-Seq samples were analyzed from six published studies in five plant species (Olea europaea, Vitis r...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570245/ https://www.ncbi.nlm.nih.gov/pubmed/32825043 http://dx.doi.org/10.3390/plants9091059 |
_version_ | 1783596904512225280 |
---|---|
author | Benny, Jubina Marchese, Annalisa Giovino, Antonio Marra, Francesco Paolo Perrone, Anna Caruso, Tiziano Martinelli, Federico |
author_facet | Benny, Jubina Marchese, Annalisa Giovino, Antonio Marra, Francesco Paolo Perrone, Anna Caruso, Tiziano Martinelli, Federico |
author_sort | Benny, Jubina |
collection | PubMed |
description | The present study aimed at identifying and mapping key genes expressed in root tissues involved in drought and salinity tolerance/resistance conserved among different fruit tree species. Twenty-six RNA-Seq samples were analyzed from six published studies in five plant species (Olea europaea, Vitis riparia Michx, Prunus mahaleb, Prunus persica, Phoenix dactylifera). This meta-analysis used a bioinformatic pipeline identifying 750 genes that were commonly modulated in three salinity studies and 683 genes that were commonly regulated among three drought studies, implying their conserved role in resistance/tolerance/response to these environmental stresses. A comparison was done on the genes that were in common among both salinity and drought resulted in 82 genes, of which 39 were commonly regulated with the same trend of expression (23 were upregulated and 16 were downregulated). Gene set enrichment and pathway analysis pointed out that pathways encoding regulation of defense response, drug transmembrane transport, and metal ion binding are general key molecular responses to these two abiotic stress responses. Furthermore, hormonal molecular crosstalk plays an essential role in the fine-tuning of plant responses to drought and salinity. Drought and salinity induced a different molecular “hormonal fingerprint”. Dehydration stress specifically enhanced multiple genes responsive to abscisic acid, gibberellin, brassinosteroids, and the ethylene-activated signaling pathway. Salt stress mostly repressed genes encoding for key enzymes in signaling proteins in auxin-, gibberellin-(gibberellin 2 oxidase 8), and abscisic acid-related pathways (aldehyde oxidase 4, abscisic acid-responsive element-binding protein 3). Abiotic stress-related genes were mapped into the chromosome to identify molecular markers usable for the improvement of these complex quantitative traits. This meta-analysis identified genes that serve as potential targets to develop cultivars with enhanced drought and salinity resistance and/or tolerance across different fruit tree crops in a biotechnological sustainable way. |
format | Online Article Text |
id | pubmed-7570245 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75702452020-10-28 Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops Benny, Jubina Marchese, Annalisa Giovino, Antonio Marra, Francesco Paolo Perrone, Anna Caruso, Tiziano Martinelli, Federico Plants (Basel) Article The present study aimed at identifying and mapping key genes expressed in root tissues involved in drought and salinity tolerance/resistance conserved among different fruit tree species. Twenty-six RNA-Seq samples were analyzed from six published studies in five plant species (Olea europaea, Vitis riparia Michx, Prunus mahaleb, Prunus persica, Phoenix dactylifera). This meta-analysis used a bioinformatic pipeline identifying 750 genes that were commonly modulated in three salinity studies and 683 genes that were commonly regulated among three drought studies, implying their conserved role in resistance/tolerance/response to these environmental stresses. A comparison was done on the genes that were in common among both salinity and drought resulted in 82 genes, of which 39 were commonly regulated with the same trend of expression (23 were upregulated and 16 were downregulated). Gene set enrichment and pathway analysis pointed out that pathways encoding regulation of defense response, drug transmembrane transport, and metal ion binding are general key molecular responses to these two abiotic stress responses. Furthermore, hormonal molecular crosstalk plays an essential role in the fine-tuning of plant responses to drought and salinity. Drought and salinity induced a different molecular “hormonal fingerprint”. Dehydration stress specifically enhanced multiple genes responsive to abscisic acid, gibberellin, brassinosteroids, and the ethylene-activated signaling pathway. Salt stress mostly repressed genes encoding for key enzymes in signaling proteins in auxin-, gibberellin-(gibberellin 2 oxidase 8), and abscisic acid-related pathways (aldehyde oxidase 4, abscisic acid-responsive element-binding protein 3). Abiotic stress-related genes were mapped into the chromosome to identify molecular markers usable for the improvement of these complex quantitative traits. This meta-analysis identified genes that serve as potential targets to develop cultivars with enhanced drought and salinity resistance and/or tolerance across different fruit tree crops in a biotechnological sustainable way. MDPI 2020-08-19 /pmc/articles/PMC7570245/ /pubmed/32825043 http://dx.doi.org/10.3390/plants9091059 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Benny, Jubina Marchese, Annalisa Giovino, Antonio Marra, Francesco Paolo Perrone, Anna Caruso, Tiziano Martinelli, Federico Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops |
title | Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops |
title_full | Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops |
title_fullStr | Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops |
title_full_unstemmed | Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops |
title_short | Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops |
title_sort | gaining insight into exclusive and common transcriptomic features linked to drought and salinity responses across fruit tree crops |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570245/ https://www.ncbi.nlm.nih.gov/pubmed/32825043 http://dx.doi.org/10.3390/plants9091059 |
work_keys_str_mv | AT bennyjubina gaininginsightintoexclusiveandcommontranscriptomicfeatureslinkedtodroughtandsalinityresponsesacrossfruittreecrops AT marcheseannalisa gaininginsightintoexclusiveandcommontranscriptomicfeatureslinkedtodroughtandsalinityresponsesacrossfruittreecrops AT giovinoantonio gaininginsightintoexclusiveandcommontranscriptomicfeatureslinkedtodroughtandsalinityresponsesacrossfruittreecrops AT marrafrancescopaolo gaininginsightintoexclusiveandcommontranscriptomicfeatureslinkedtodroughtandsalinityresponsesacrossfruittreecrops AT perroneanna gaininginsightintoexclusiveandcommontranscriptomicfeatureslinkedtodroughtandsalinityresponsesacrossfruittreecrops AT carusotiziano gaininginsightintoexclusiveandcommontranscriptomicfeatureslinkedtodroughtandsalinityresponsesacrossfruittreecrops AT martinellifederico gaininginsightintoexclusiveandcommontranscriptomicfeatureslinkedtodroughtandsalinityresponsesacrossfruittreecrops |