Cargando…
Copernicia Prunifera Leaf Fiber: A Promising New Reinforcement for Epoxy Composites
A basic characterization of novel epoxy matrix composites incorporated with up to 40 vol% of processed leaf fibers from the Copernicia prunifera palm tree, known as carnauba fibers, was performed. The tensile properties for the composite reinforced with 40 vol% of carnauba fibers showed an increase...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570309/ https://www.ncbi.nlm.nih.gov/pubmed/32937924 http://dx.doi.org/10.3390/polym12092090 |
Sumario: | A basic characterization of novel epoxy matrix composites incorporated with up to 40 vol% of processed leaf fibers from the Copernicia prunifera palm tree, known as carnauba fibers, was performed. The tensile properties for the composite reinforced with 40 vol% of carnauba fibers showed an increase (40%) in the tensile strength and (69%) for the elastic modulus. All composites presented superior elongation values in comparison to neat epoxy. Izod impact tests complemented by fibers/matrix interfacial strength evaluation by pullout test and Fourier transformed infrared (FTIR) analysis revealed for the first time a significant reinforcement effect (> 9 times) caused by the carnauba fiber to polymer matrix. Additional thermogravimetric analysis (TG/DTG) showed the onset of thermal degradation for the composites (326 ~ 306 °C), which represents a better thermal stability than the plain carnauba fiber (267 °C) but slightly lower than that of the neat epoxy (342 °C). Differential scanning calorimetry (DSC) disclosed an endothermic peak at 63 °C for the neat epoxy associated with the glass transition temperature (T(g)). DSC endothermic peaks for the composites, between 73 to 103 °C, and for the plain carnauba fibers, 107 °C, are attributed to moisture release. Dynamic mechanical analysis confirms T(g) of 64 °C for the neat epoxy and slightly higher composite values (82–84 °C) due to the carnauba fiber interference with the epoxy macromolecular chain mobility. Both by its higher impact resistance and thermal behavior, the novel carnauba fibers epoxy composites might be considered a viable substitute for commonly used glass fiber composites. |
---|