Cargando…

The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.)

Optimizing nutrient usage in plants is vital for a sustainable yield under biotic and abiotic stresses. Since silicon and phosphorus are considered key elements for plant growth, this study assessed the efficient supplementation strategy of silicon and phosphorus in soybean plants under salt stress...

Descripción completa

Detalles Bibliográficos
Autores principales: Adhikari, Arjun, Khan, Muhammad Aaqil, Lee, Ko-Eun, Kang, Sang-Mo, Dhungana, Sanjeev Kumar, Bhusal, Narayan, Lee, In-Jung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570339/
https://www.ncbi.nlm.nih.gov/pubmed/32825007
http://dx.doi.org/10.3390/microorganisms8091256
_version_ 1783596926000693248
author Adhikari, Arjun
Khan, Muhammad Aaqil
Lee, Ko-Eun
Kang, Sang-Mo
Dhungana, Sanjeev Kumar
Bhusal, Narayan
Lee, In-Jung
author_facet Adhikari, Arjun
Khan, Muhammad Aaqil
Lee, Ko-Eun
Kang, Sang-Mo
Dhungana, Sanjeev Kumar
Bhusal, Narayan
Lee, In-Jung
author_sort Adhikari, Arjun
collection PubMed
description Optimizing nutrient usage in plants is vital for a sustainable yield under biotic and abiotic stresses. Since silicon and phosphorus are considered key elements for plant growth, this study assessed the efficient supplementation strategy of silicon and phosphorus in soybean plants under salt stress through inoculation using the rhizospheric strain—Pseudomonas koreensis MU2. The screening analysis of MU2 showed its high salt-tolerant potential, which solubilizes both silicate and phosphate. The isolate, MU2 produced gibberellic acid (GA(1), GA(3)) and organic acids (malic acid, citric acid, acetic acid, and tartaric acid) in pure culture under both normal and salt-stressed conditions. The combined application of MU2, silicon, and phosphorus significantly improved silicon and phosphorus uptake, reduced Na(+) ion influx by 70%, and enhanced K(+) uptake by 46% in the shoots of soybean plants grown under salt-stress conditions. MU2 inoculation upregulated the salt-resistant genes GmST1, GmSALT3, and GmAKT2, which significantly reduced the endogenous hormones abscisic acid and jasmonic acid while, it enhanced the salicylic acid content of soybean. In addition, MU2 inoculation strengthened the host’s antioxidant system through the reduction of lipid peroxidation and proline while, it enhanced the reduced glutathione content. Moreover, MU2 inoculation promoted root and shoot length, plant biomass, and the chlorophyll content of soybean plants. These findings suggest that MU2 could be a potential biofertilizer catalyst for the amplification of the use efficiency of silicon and phosphorus fertilizers to mitigate salt stress.
format Online
Article
Text
id pubmed-7570339
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75703392020-10-28 The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.) Adhikari, Arjun Khan, Muhammad Aaqil Lee, Ko-Eun Kang, Sang-Mo Dhungana, Sanjeev Kumar Bhusal, Narayan Lee, In-Jung Microorganisms Article Optimizing nutrient usage in plants is vital for a sustainable yield under biotic and abiotic stresses. Since silicon and phosphorus are considered key elements for plant growth, this study assessed the efficient supplementation strategy of silicon and phosphorus in soybean plants under salt stress through inoculation using the rhizospheric strain—Pseudomonas koreensis MU2. The screening analysis of MU2 showed its high salt-tolerant potential, which solubilizes both silicate and phosphate. The isolate, MU2 produced gibberellic acid (GA(1), GA(3)) and organic acids (malic acid, citric acid, acetic acid, and tartaric acid) in pure culture under both normal and salt-stressed conditions. The combined application of MU2, silicon, and phosphorus significantly improved silicon and phosphorus uptake, reduced Na(+) ion influx by 70%, and enhanced K(+) uptake by 46% in the shoots of soybean plants grown under salt-stress conditions. MU2 inoculation upregulated the salt-resistant genes GmST1, GmSALT3, and GmAKT2, which significantly reduced the endogenous hormones abscisic acid and jasmonic acid while, it enhanced the salicylic acid content of soybean. In addition, MU2 inoculation strengthened the host’s antioxidant system through the reduction of lipid peroxidation and proline while, it enhanced the reduced glutathione content. Moreover, MU2 inoculation promoted root and shoot length, plant biomass, and the chlorophyll content of soybean plants. These findings suggest that MU2 could be a potential biofertilizer catalyst for the amplification of the use efficiency of silicon and phosphorus fertilizers to mitigate salt stress. MDPI 2020-08-19 /pmc/articles/PMC7570339/ /pubmed/32825007 http://dx.doi.org/10.3390/microorganisms8091256 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Adhikari, Arjun
Khan, Muhammad Aaqil
Lee, Ko-Eun
Kang, Sang-Mo
Dhungana, Sanjeev Kumar
Bhusal, Narayan
Lee, In-Jung
The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.)
title The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.)
title_full The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.)
title_fullStr The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.)
title_full_unstemmed The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.)
title_short The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.)
title_sort halotolerant rhizobacterium—pseudomonas koreensis mu2 enhances inorganic silicon and phosphorus use efficiency and augments salt stress tolerance in soybean (glycine max l.)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570339/
https://www.ncbi.nlm.nih.gov/pubmed/32825007
http://dx.doi.org/10.3390/microorganisms8091256
work_keys_str_mv AT adhikariarjun thehalotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT khanmuhammadaaqil thehalotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT leekoeun thehalotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT kangsangmo thehalotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT dhunganasanjeevkumar thehalotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT bhusalnarayan thehalotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT leeinjung thehalotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT adhikariarjun halotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT khanmuhammadaaqil halotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT leekoeun halotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT kangsangmo halotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT dhunganasanjeevkumar halotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT bhusalnarayan halotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl
AT leeinjung halotolerantrhizobacteriumpseudomonaskoreensismu2enhancesinorganicsiliconandphosphorususeefficiencyandaugmentssaltstresstoleranceinsoybeanglycinemaxl