Cargando…

Coalescence of Binary Droplets in the Transformer Oil Based on Small Amounts of Polymer: Effects of Initial Droplet Diameter and Collision Parameter

In engineering applications, the coalescence of droplets in the oil phase dominates the efficiency of water-oil separation. To improve the efficiency of water-oil separation, many studies have been devoted to exploring the process of water droplets colliding in the oil phase. In this paper, the volu...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yiting, Qian, Lijuan, Chen, Zhongli, Zhou, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570392/
https://www.ncbi.nlm.nih.gov/pubmed/32917051
http://dx.doi.org/10.3390/polym12092054
Descripción
Sumario:In engineering applications, the coalescence of droplets in the oil phase dominates the efficiency of water-oil separation. To improve the efficiency of water-oil separation, many studies have been devoted to exploring the process of water droplets colliding in the oil phase. In this paper, the volume of fluid (VOF) method is employed to simulate the coalescence of water droplets in the transformer oil based on small amounts of polymer. The influences of the initial diameter and collision parameter of two equal droplets on droplet deformation and coalescence time are investigated. The time evolution curves of the dimensionless maximum deformation diameter of the droplets indicate that the larger the droplet diameter, the more obvious the deformation from central collisions. As the collision parameter increases, the contact area of the two droplets, as well as the kinetic energy that is converted into surface energy, decreases, resulting in an increase in droplet deformation. Furthermore, the effects of the initial droplet diameter and collision parameter on coalescence time are also investigated and discussed. The results reveal that as the initial droplet diameter and collision parameter increase, the droplet coalescence time increases.