Cargando…
ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid
The advent of the Smart Grid (SG) raises severe cybersecurity risks that can lead to devastating consequences. In this paper, we present a novel anomaly-based Intrusion Detection System (IDS), called ARIES (smArt gRid Intrusion dEtection System), which is capable of protecting efficiently SG communi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570496/ https://www.ncbi.nlm.nih.gov/pubmed/32948064 http://dx.doi.org/10.3390/s20185305 |
_version_ | 1783596960095141888 |
---|---|
author | Radoglou Grammatikis, Panagiotis Sarigiannidis, Panagiotis Efstathopoulos, Georgios Panaousis, Emmanouil |
author_facet | Radoglou Grammatikis, Panagiotis Sarigiannidis, Panagiotis Efstathopoulos, Georgios Panaousis, Emmanouil |
author_sort | Radoglou Grammatikis, Panagiotis |
collection | PubMed |
description | The advent of the Smart Grid (SG) raises severe cybersecurity risks that can lead to devastating consequences. In this paper, we present a novel anomaly-based Intrusion Detection System (IDS), called ARIES (smArt gRid Intrusion dEtection System), which is capable of protecting efficiently SG communications. ARIES combines three detection layers that are devoted to recognising possible cyberattacks and anomalies against (a) network flows, (b) Modbus/Transmission Control Protocol (TCP) packets and (c) operational data. Each detection layer relies on a Machine Learning (ML) model trained using data originating from a power plant. In particular, the first layer (network flow-based detection) performs a supervised multiclass classification, recognising Denial of Service (DoS), brute force attacks, port scanning attacks and bots. The second layer (packet-based detection) detects possible anomalies related to the Modbus packets, while the third layer (operational data based detection) monitors and identifies anomalies upon operational data (i.e., time series electricity measurements). By emphasising on the third layer, the ARIES Generative Adversarial Network (ARIES GAN) with novel error minimisation functions was developed, considering mainly the reconstruction difference. Moreover, a novel reformed conditional input was suggested, consisting of random noise and the signal features at any given time instance. Based on the evaluation analysis, the proposed GAN network overcomes the efficacy of conventional ML methods in terms of Accuracy and the F1 score. |
format | Online Article Text |
id | pubmed-7570496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75704962020-10-28 ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid Radoglou Grammatikis, Panagiotis Sarigiannidis, Panagiotis Efstathopoulos, Georgios Panaousis, Emmanouil Sensors (Basel) Article The advent of the Smart Grid (SG) raises severe cybersecurity risks that can lead to devastating consequences. In this paper, we present a novel anomaly-based Intrusion Detection System (IDS), called ARIES (smArt gRid Intrusion dEtection System), which is capable of protecting efficiently SG communications. ARIES combines three detection layers that are devoted to recognising possible cyberattacks and anomalies against (a) network flows, (b) Modbus/Transmission Control Protocol (TCP) packets and (c) operational data. Each detection layer relies on a Machine Learning (ML) model trained using data originating from a power plant. In particular, the first layer (network flow-based detection) performs a supervised multiclass classification, recognising Denial of Service (DoS), brute force attacks, port scanning attacks and bots. The second layer (packet-based detection) detects possible anomalies related to the Modbus packets, while the third layer (operational data based detection) monitors and identifies anomalies upon operational data (i.e., time series electricity measurements). By emphasising on the third layer, the ARIES Generative Adversarial Network (ARIES GAN) with novel error minimisation functions was developed, considering mainly the reconstruction difference. Moreover, a novel reformed conditional input was suggested, consisting of random noise and the signal features at any given time instance. Based on the evaluation analysis, the proposed GAN network overcomes the efficacy of conventional ML methods in terms of Accuracy and the F1 score. MDPI 2020-09-16 /pmc/articles/PMC7570496/ /pubmed/32948064 http://dx.doi.org/10.3390/s20185305 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Radoglou Grammatikis, Panagiotis Sarigiannidis, Panagiotis Efstathopoulos, Georgios Panaousis, Emmanouil ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid |
title | ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid |
title_full | ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid |
title_fullStr | ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid |
title_full_unstemmed | ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid |
title_short | ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid |
title_sort | aries: a novel multivariate intrusion detection system for smart grid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570496/ https://www.ncbi.nlm.nih.gov/pubmed/32948064 http://dx.doi.org/10.3390/s20185305 |
work_keys_str_mv | AT radoglougrammatikispanagiotis ariesanovelmultivariateintrusiondetectionsystemforsmartgrid AT sarigiannidispanagiotis ariesanovelmultivariateintrusiondetectionsystemforsmartgrid AT efstathopoulosgeorgios ariesanovelmultivariateintrusiondetectionsystemforsmartgrid AT panaousisemmanouil ariesanovelmultivariateintrusiondetectionsystemforsmartgrid |