Cargando…
Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products
Hyperspectral imaging (HSI) emerges as a non-destructive and rapid analytical tool for assessing food quality, safety, and authenticity. This work aims to investigate the potential of combining the spectral and spatial features of HSI data with the aid of deep learning approach for the pixel-wise cl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570506/ https://www.ncbi.nlm.nih.gov/pubmed/32957597 http://dx.doi.org/10.3390/s20185322 |
_version_ | 1783596962451292160 |
---|---|
author | Zhu, Hongyan Gowen, Aoife Feng, Hailin Yu, Keping Xu, Jun-Li |
author_facet | Zhu, Hongyan Gowen, Aoife Feng, Hailin Yu, Keping Xu, Jun-Li |
author_sort | Zhu, Hongyan |
collection | PubMed |
description | Hyperspectral imaging (HSI) emerges as a non-destructive and rapid analytical tool for assessing food quality, safety, and authenticity. This work aims to investigate the potential of combining the spectral and spatial features of HSI data with the aid of deep learning approach for the pixel-wise classification of food products. We applied two strategies for extracting spatial-spectral features: (1) directly applying three-dimensional convolution neural network (3-D CNN) model; (2) first performing principal component analysis (PCA) and then developing 2-D CNN model from the first few PCs. These two methods were compared in terms of efficiency and accuracy, exemplified through two case studies, i.e., classification of four sweet products and differentiation between white stripe (“myocommata”) and red muscle (“myotome”) pixels on salmon fillets. Results showed that combining spectral-spatial features significantly enhanced the overall accuracy for sweet dataset, compared to partial least square discriminant analysis (PLSDA) and support vector machine (SVM). Results also demonstrated that spectral pre-processing techniques prior to CNN model development can enhance the classification performance. This work will open the door for more research in the area of practical applications in food industry. |
format | Online Article Text |
id | pubmed-7570506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75705062020-10-28 Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products Zhu, Hongyan Gowen, Aoife Feng, Hailin Yu, Keping Xu, Jun-Li Sensors (Basel) Article Hyperspectral imaging (HSI) emerges as a non-destructive and rapid analytical tool for assessing food quality, safety, and authenticity. This work aims to investigate the potential of combining the spectral and spatial features of HSI data with the aid of deep learning approach for the pixel-wise classification of food products. We applied two strategies for extracting spatial-spectral features: (1) directly applying three-dimensional convolution neural network (3-D CNN) model; (2) first performing principal component analysis (PCA) and then developing 2-D CNN model from the first few PCs. These two methods were compared in terms of efficiency and accuracy, exemplified through two case studies, i.e., classification of four sweet products and differentiation between white stripe (“myocommata”) and red muscle (“myotome”) pixels on salmon fillets. Results showed that combining spectral-spatial features significantly enhanced the overall accuracy for sweet dataset, compared to partial least square discriminant analysis (PLSDA) and support vector machine (SVM). Results also demonstrated that spectral pre-processing techniques prior to CNN model development can enhance the classification performance. This work will open the door for more research in the area of practical applications in food industry. MDPI 2020-09-17 /pmc/articles/PMC7570506/ /pubmed/32957597 http://dx.doi.org/10.3390/s20185322 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhu, Hongyan Gowen, Aoife Feng, Hailin Yu, Keping Xu, Jun-Li Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products |
title | Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products |
title_full | Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products |
title_fullStr | Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products |
title_full_unstemmed | Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products |
title_short | Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products |
title_sort | deep spectral-spatial features of near infrared hyperspectral images for pixel-wise classification of food products |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570506/ https://www.ncbi.nlm.nih.gov/pubmed/32957597 http://dx.doi.org/10.3390/s20185322 |
work_keys_str_mv | AT zhuhongyan deepspectralspatialfeaturesofnearinfraredhyperspectralimagesforpixelwiseclassificationoffoodproducts AT gowenaoife deepspectralspatialfeaturesofnearinfraredhyperspectralimagesforpixelwiseclassificationoffoodproducts AT fenghailin deepspectralspatialfeaturesofnearinfraredhyperspectralimagesforpixelwiseclassificationoffoodproducts AT yukeping deepspectralspatialfeaturesofnearinfraredhyperspectralimagesforpixelwiseclassificationoffoodproducts AT xujunli deepspectralspatialfeaturesofnearinfraredhyperspectralimagesforpixelwiseclassificationoffoodproducts |