Cargando…
Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products
Hyperspectral imaging (HSI) emerges as a non-destructive and rapid analytical tool for assessing food quality, safety, and authenticity. This work aims to investigate the potential of combining the spectral and spatial features of HSI data with the aid of deep learning approach for the pixel-wise cl...
Autores principales: | Zhu, Hongyan, Gowen, Aoife, Feng, Hailin, Yu, Keping, Xu, Jun-Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570506/ https://www.ncbi.nlm.nih.gov/pubmed/32957597 http://dx.doi.org/10.3390/s20185322 |
Ejemplares similares
-
Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data
por: Li, Chenming, et al.
Publicado: (2019) -
A Study on the Application of Near Infrared Hyperspectral Chemical Imaging for Monitoring Moisture Content and Water Activity in Low Moisture Systems
por: Achata, Eva, et al.
Publicado: (2015) -
Deep Learning-Based Near-Infrared Hyperspectral Imaging for Food Nutrition Estimation
por: Li, Tianhao, et al.
Publicado: (2023) -
The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study
por: Mantripragada, Kiran, et al.
Publicado: (2022) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015)