Cargando…
Spatial–Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN
Convolutional neural networks provide an ideal solution for hyperspectral image (HSI) classification. However, the classification effect is not satisfactory when limited training samples are available. Focused on “small sample” hyperspectral classification, we proposed a novel 3D-2D-convolutional ne...
Autores principales: | Zhang, Jin, Wei, Fengyuan, Feng, Fan, Wang, Chunyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570518/ https://www.ncbi.nlm.nih.gov/pubmed/32933016 http://dx.doi.org/10.3390/s20185191 |
Ejemplares similares
-
Learning Deep Hierarchical Spatial–Spectral Features for Hyperspectral Image Classification Based on Residual 3D-2D CNN
por: Feng, Fan, et al.
Publicado: (2019) -
Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
por: Dang, Lanxue, et al.
Publicado: (2022) -
A 3D-2D Multibranch Feature Fusion and Dense Attention Network for Hyperspectral Image Classification
por: Gao, Hongmin, et al.
Publicado: (2021) -
Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
por: Cheng, Shuli, et al.
Publicado: (2021) -
A new hyperspectral image classification method based on spatial-spectral features
por: Shenming, Qu, et al.
Publicado: (2022)