Cargando…
Scaling Effects on Chlorophyll Content Estimations with RGB Camera Mounted on a UAV Platform Using Machine-Learning Methods
Timely monitoring and precise estimation of the leaf chlorophyll contents of maize are crucial for agricultural practices. The scale effects are very important as the calculated vegetation index (VI) were crucial for the quantitative remote sensing. In this study, the scale effects were investigated...
Autores principales: | Guo, Yahui, Yin, Guodong, Sun, Hongyong, Wang, Hanxi, Chen, Shouzhi, Senthilnath, J., Wang, Jingzhe, Fu, Yongshuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570550/ https://www.ncbi.nlm.nih.gov/pubmed/32916808 http://dx.doi.org/10.3390/s20185130 |
Ejemplares similares
-
Modified Red Blue Vegetation Index for Chlorophyll Estimation and Yield Prediction of Maize from Visible Images Captured by UAV
por: Guo, Yahui, et al.
Publicado: (2020) -
Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs
por: dos Santos, Anderson Aparecido, et al.
Publicado: (2019) -
Ramie Yield Estimation Based on UAV RGB Images
por: Fu, Hongyu, et al.
Publicado: (2021) -
Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV
por: de Oliveira, Diulhio Candido, et al.
Publicado: (2018) -
A Novel Transformer-Based IMU Self-Calibration Approach through On-Board RGB Camera for UAV Flight Stabilization
por: Avola, Danilo, et al.
Publicado: (2023)