Cargando…

A Vision-Based Driver Assistance System with Forward Collision and Overtaking Detection †

One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are ad...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Huei-Yung, Dai, Jyun-Min, Wu, Lu-Ting, Chen, Li-Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570579/
https://www.ncbi.nlm.nih.gov/pubmed/32916970
http://dx.doi.org/10.3390/s20185139
Descripción
Sumario:One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques.