Cargando…
Negentropy-Based Sparsity-Promoting Reconstruction with Fast Iterative Solution from Noisy Measurements
Compressed sensing provides an elegant framework for recovering sparse signals from compressed measurements. This paper addresses the problem of sparse signal reconstruction from compressed measurements that is more robust to complex, especially non-Gaussian noise, which arises in many applications....
Autores principales: | Zhao, Yingxin, Huang, Yingjie, Wu, Hong, Zhang, Ming, Liu, Zhiyang, Ding, Shuxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570592/ https://www.ncbi.nlm.nih.gov/pubmed/32962241 http://dx.doi.org/10.3390/s20185384 |
Ejemplares similares
-
Energy from Negentropy of Non-Cahotic Systems
por: Quarati, Piero, et al.
Publicado: (2018) -
Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault
por: Tian, Tian, et al.
Publicado: (2023) -
Hippocampus Segmentation Method Based on Subspace Patch-Sparsity Clustering in Noisy Brain MRI
por: Ren, Xiaogang, et al.
Publicado: (2021) -
Group Sparse Precoding for Cloud-RAN with Multiple User Antennas
por: Liu, Zhiyang, et al.
Publicado: (2018) -
Compound Fault Diagnosis of Rolling Bearing Based on Singular Negentropy Difference Spectrum and Integrated Fast Spectral Correlation
por: Tang, Guiji, et al.
Publicado: (2020)