Cargando…
Software Tool for Soil Surface Parameters Retrieval from Fully Polarimetric Remotely Sensed SAR Data
The retrieval of soil surface parameters, in particular soil moisture and roughness, based on Synthetic Aperture Radar (SAR) data, has been the subject of a large number of studies, of which results are available in the scientific literature. However, although refined methods based on theoretical/an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570601/ https://www.ncbi.nlm.nih.gov/pubmed/32906748 http://dx.doi.org/10.3390/s20185085 |
Sumario: | The retrieval of soil surface parameters, in particular soil moisture and roughness, based on Synthetic Aperture Radar (SAR) data, has been the subject of a large number of studies, of which results are available in the scientific literature. However, although refined methods based on theoretical/analytical scattering models have been proposed and successfully applied in experimental studies, at the operative level very simple, empirical models with a number of adjustable parameters are usually employed. One of the reasons for this situation is that retrieval methods based on analytical scattering models are not easy to implement and to be employed by non-expert users. Related to this, commercially and freely available software tools for the processing of SAR data, although including routines for basic manipulation of polarimetric SAR data (e.g., coherency and covariance matrix calculation, Pauli decomposition, etc.), do not implement easy-to-use methods for surface parameter retrieval. In order to try to fill this gap, in this paper we present a user-friendly computer program for the retrieval of soil surface parameters from Polarimetric Synthetic Aperture Radar (PolSAR) imageries. The program evaluates soil permittivity, soil moisture and soil roughness based on the theoretical predictions of the electromagnetic scattering provided by the Polarimetric Two-Scale Model (PTSM) and the Polarimetric Two-Scale Two-Component Model (PTSTCM). In particular, nine different retrieval methodologies, whose applicability depends on both the used polarimetric data (dual- or full-pol) and the characteristics of the observed scene (e.g., on its topography and on its vegetation cover), as well as their implementation in the Interactive Data Language (IDL) platform, are discussed. One specific example from Germany’s Demmin test-site is presented in detail, in order to provide a first guide to the use of the tool. Obtained retrieval results are in agreement with what was expected according to the available literature. |
---|