Cargando…

A Smart Multi-Plane Detector Design for Ultrafast Electron Beam X-ray Computed Tomography

In this paper, a smart detector design for novel multi-plane ultrafast electron beam X-ray computed tomography is presented. The concept is based on multi-plane electron beam scanning on a transparent X-ray target and elongated cuboid-shape scintillation detectors for radiation detection over an ext...

Descripción completa

Detalles Bibliográficos
Autores principales: Bieberle, André, Windisch, Dominic, Iskander, Kerolos, Bieberle, Martina, Hampel, Uwe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570622/
https://www.ncbi.nlm.nih.gov/pubmed/32927846
http://dx.doi.org/10.3390/s20185174
Descripción
Sumario:In this paper, a smart detector design for novel multi-plane ultrafast electron beam X-ray computed tomography is presented. The concept is based on multi-plane electron beam scanning on a transparent X-ray target and elongated cuboid-shape scintillation detectors for radiation detection over an extended axial scanning range. The optical part of the scintillation detector acts as both an X-ray sensitive scintillator with a fast time response and a light guide. With that, we reduce detector complexity, number of detector elements, overall power consumption, and detector costs. We investigated the performance of this new multi-plane detector design with an evaluation detector setup that is made of cerium doped lutetium yttrium oxyorthosilicate (LYSO:Ce) as scintillation material and an avalanche photodiode (APD) array. Thereby, we assessed two design variants: A monolithic LYSO bar detector and a sandwich detector made of multiple LYSO crystals and glass light-guides. Both types reveal excellent linear detector responses, long-term stabilities, and comparable signal qualities.