Cargando…
Deep-Net: A Lightweight CNN-Based Speech Emotion Recognition System Using Deep Frequency Features
Artificial intelligence (AI) and machine learning (ML) are employed to make systems smarter. Today, the speech emotion recognition (SER) system evaluates the emotional state of the speaker by investigating his/her speech signal. Emotion recognition is a challenging task for a machine. In addition, m...
Autores principales: | Anvarjon, Tursunov, Mustaqeem, Kwon, Soonil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570673/ https://www.ncbi.nlm.nih.gov/pubmed/32932723 http://dx.doi.org/10.3390/s20185212 |
Ejemplares similares
-
Age and Gender Recognition Using a Convolutional Neural Network with a Specially Designed Multi-Attention Module through Speech Spectrograms
por: Tursunov, Anvarjon, et al.
Publicado: (2021) -
A CNN-Assisted Enhanced Audio Signal Processing for Speech Emotion Recognition
por: Mustaqeem,, et al.
Publicado: (2019) -
Speech Emotion Recognition with Heterogeneous Feature Unification of Deep Neural Network
por: Jiang, Wei, et al.
Publicado: (2019) -
An Emotion Recognition Embedded System using a Lightweight Deep Learning Model
por: Bazargani, Mehdi, et al.
Publicado: (2023) -
Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition
por: Mocanu, Bogdan, et al.
Publicado: (2021)