Cargando…
Exploratory Analysis of Urban Climate Using a Gap-Filled Landsat 8 Land Surface Temperature Data Set
The Landsat 8 satellites have retrieved land surface temperature (LST) resampled at a 30-m spatial resolution since 2013, but the urban climate studies frequently use a limited number of images due to the problems related to missing data over the city of interest. This paper endorses a procedure for...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570728/ https://www.ncbi.nlm.nih.gov/pubmed/32957667 http://dx.doi.org/10.3390/s20185336 |
Sumario: | The Landsat 8 satellites have retrieved land surface temperature (LST) resampled at a 30-m spatial resolution since 2013, but the urban climate studies frequently use a limited number of images due to the problems related to missing data over the city of interest. This paper endorses a procedure for building a long-term gap-free LST data set in an urban area using the high-resolution Landsat 8 imagery. The study is applied on 94 images available through 2013–2018 over Bucharest (Romania). The raw images containing between 1.1% and 58.4% missing LST data were filled in using the Data INterpolating Empirical Orthogonal Functions (DINEOF) algorithm implemented in the sinkr R packages. The resulting high-spatial-resolution gap-filled land surface temperature data set was used to explore the LST climatology over Bucharest (Romania) an urban area, at a monthly, seasonal, and annual scale. The performance of the gap-filling method was checked using a cross-validation procedure, and the results pledge for the development of an LST-based urban climatology. |
---|