Cargando…
Unsupervised Monocular Depth Estimation Method Based on Uncertainty Analysis and Retinex Algorithm
Depth estimation of a single image presents a classic problem for computer vision, and is important for the 3D reconstruction of scenes, augmented reality, and object detection. At present, most researchers are beginning to focus on unsupervised monocular depth estimation. This paper proposes soluti...
Autores principales: | Song, Chuanxue, Qi, Chunyang, Song, Shixin, Xiao, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570747/ https://www.ncbi.nlm.nih.gov/pubmed/32967069 http://dx.doi.org/10.3390/s20185389 |
Ejemplares similares
-
Unsupervised Monocular Depth Estimation for Colonoscope System Using Feedback Network
por: Hwang, Seung-Jun, et al.
Publicado: (2021) -
What makes the unsupervised monocular depth estimation (UMDE) model training better
por: Wang, Xiangtong, et al.
Publicado: (2022) -
Unsupervised Monocular Depth and Camera Pose Estimation with Multiple Masks and Geometric Consistency Constraints
por: Zhang, Xudong, et al.
Publicado: (2023) -
A depth iterative illumination estimation network for low-light image enhancement based on retinex theory
por: Chen, Yongqiang, et al.
Publicado: (2023) -
Retinex-Based Fast Algorithm for Low-Light Image Enhancement
por: Liu, Shouxin, et al.
Publicado: (2021)